基于数据增强的小样本情况下锂离子电池剩余使用寿命相似性预测

Zongyao Wang, ShangGuan Wei, Cong Peng, Baigen Cai
{"title":"基于数据增强的小样本情况下锂离子电池剩余使用寿命相似性预测","authors":"Zongyao Wang, ShangGuan Wei, Cong Peng, Baigen Cai","doi":"10.17531/ein/175585","DOIUrl":null,"url":null,"abstract":"Accurately predicting the remaining useful life of lithium-ion batteries is crucial for enhancing battery reliability and reducing maintenance costs. In recent years, similarity-based prediction methods have gained significant attention and practical use. However, these methods rely on sufficient and diverse run-to-failure data. To address this limitation, this paper proposes a data augmentation-based SBP method for accurate RUL prediction of lithium-ion batteries. By employing the single exponential model and Sobol sampling, realistic degradation trajectories can be generated, even with only one complete run-to-failure degradation dataset. The similarity between the generated prediction reference trajectories and real degradation trajectories is evaluated using the Pearson distance, and RUL point estimation is performed through weighted averaging. Furthermore, the uncertainty of the RUL predictions is quantified using kernel density estimation. The effectiveness of the proposed RUL prediction method is validated using the NASA lithium-ion battery dataset.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"53 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity Based Remaining Useful Life Prediction for Lithium-ion Battery under Small Sample Situation Based on Data Augmentation\",\"authors\":\"Zongyao Wang, ShangGuan Wei, Cong Peng, Baigen Cai\",\"doi\":\"10.17531/ein/175585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately predicting the remaining useful life of lithium-ion batteries is crucial for enhancing battery reliability and reducing maintenance costs. In recent years, similarity-based prediction methods have gained significant attention and practical use. However, these methods rely on sufficient and diverse run-to-failure data. To address this limitation, this paper proposes a data augmentation-based SBP method for accurate RUL prediction of lithium-ion batteries. By employing the single exponential model and Sobol sampling, realistic degradation trajectories can be generated, even with only one complete run-to-failure degradation dataset. The similarity between the generated prediction reference trajectories and real degradation trajectories is evaluated using the Pearson distance, and RUL point estimation is performed through weighted averaging. Furthermore, the uncertainty of the RUL predictions is quantified using kernel density estimation. The effectiveness of the proposed RUL prediction method is validated using the NASA lithium-ion battery dataset.\",\"PeriodicalId\":335030,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"53 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/175585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/175585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测锂离子电池的剩余使用寿命对于提高电池可靠性和降低维护成本至关重要。近年来,基于相似性的预测方法得到了广泛关注和实际应用。然而,这些方法依赖于充足且多样化的运行至故障数据。针对这一局限,本文提出了一种基于数据增强的 SBP 方法,用于准确预测锂离子电池的 RUL。通过采用单指数模型和 Sobol 采样,即使只有一个完整的运行至失效降解数据集,也能生成真实的降解轨迹。利用皮尔逊距离评估生成的预测参考轨迹与真实退化轨迹之间的相似性,并通过加权平均进行 RUL 点估计。此外,还利用核密度估计量化了 RUL 预测的不确定性。利用 NASA 锂离子电池数据集验证了所提出的 RUL 预测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity Based Remaining Useful Life Prediction for Lithium-ion Battery under Small Sample Situation Based on Data Augmentation
Accurately predicting the remaining useful life of lithium-ion batteries is crucial for enhancing battery reliability and reducing maintenance costs. In recent years, similarity-based prediction methods have gained significant attention and practical use. However, these methods rely on sufficient and diverse run-to-failure data. To address this limitation, this paper proposes a data augmentation-based SBP method for accurate RUL prediction of lithium-ion batteries. By employing the single exponential model and Sobol sampling, realistic degradation trajectories can be generated, even with only one complete run-to-failure degradation dataset. The similarity between the generated prediction reference trajectories and real degradation trajectories is evaluated using the Pearson distance, and RUL point estimation is performed through weighted averaging. Furthermore, the uncertainty of the RUL predictions is quantified using kernel density estimation. The effectiveness of the proposed RUL prediction method is validated using the NASA lithium-ion battery dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信