度量空间中的度量动态和缩放熵

IF 1.4 4区 数学 Q1 MATHEMATICS
A. Vershik, Georgii A Veprev, P. Zatitskii
{"title":"度量空间中的度量动态和缩放熵","authors":"A. Vershik, Georgii A Veprev, P. Zatitskii","doi":"10.4213/rm10103e","DOIUrl":null,"url":null,"abstract":"This survey is dedicated to a new direction in the theory of dynamical systems, the dynamics of metrics in measure spaces and new (catalytic) invariants of transformations with invariant measure. A space equipped with a measure and a metric which are naturally consistent with each other (a metric triple, or an mm-space) defines automatically the notion of its entropy class, thus allowing one to construct a theory of scaling entropy for dynamical systems with invariant measure, which is different and more general in comparison to the Shannon-Kolmogorov theory. This possibility was hinted at by Shannon himself, but the hint went unnoticed. The classification of metric triples in terms of matrix distributions presented in this paper was proposed by Gromov and Vershik. We describe some corollaries obtained by applying this theory. Bibliography: 88 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"27 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of metrics in measure spaces and scaling entropy\",\"authors\":\"A. Vershik, Georgii A Veprev, P. Zatitskii\",\"doi\":\"10.4213/rm10103e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This survey is dedicated to a new direction in the theory of dynamical systems, the dynamics of metrics in measure spaces and new (catalytic) invariants of transformations with invariant measure. A space equipped with a measure and a metric which are naturally consistent with each other (a metric triple, or an mm-space) defines automatically the notion of its entropy class, thus allowing one to construct a theory of scaling entropy for dynamical systems with invariant measure, which is different and more general in comparison to the Shannon-Kolmogorov theory. This possibility was hinted at by Shannon himself, but the hint went unnoticed. The classification of metric triples in terms of matrix distributions presented in this paper was proposed by Gromov and Vershik. We describe some corollaries obtained by applying this theory. Bibliography: 88 titles.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4213/rm10103e\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4213/rm10103e","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究致力于动态系统理论的一个新方向,即度量空间中的度量动力学和具有不变度量的变换的新(催化)不变式。一个空间如果配备了相互自然一致的度量和度量(度量三重空间或毫米空间),就会自动定义其熵类的概念,从而可以为具有不变度量的动力系统构建一种缩放熵理论,这种理论与香农-科尔莫戈罗夫理论不同,而且更具一般性。香农本人曾暗示过这种可能性,但这一暗示并未引起人们的注意。本文提出的以矩阵分布为基础的度量三元分类是由格罗莫夫和弗尔希克提出的。我们描述了应用这一理论得到的一些推论。参考书目:88 种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of metrics in measure spaces and scaling entropy
This survey is dedicated to a new direction in the theory of dynamical systems, the dynamics of metrics in measure spaces and new (catalytic) invariants of transformations with invariant measure. A space equipped with a measure and a metric which are naturally consistent with each other (a metric triple, or an mm-space) defines automatically the notion of its entropy class, thus allowing one to construct a theory of scaling entropy for dynamical systems with invariant measure, which is different and more general in comparison to the Shannon-Kolmogorov theory. This possibility was hinted at by Shannon himself, but the hint went unnoticed. The classification of metric triples in terms of matrix distributions presented in this paper was proposed by Gromov and Vershik. We describe some corollaries obtained by applying this theory. Bibliography: 88 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信