GO@ 多巴胺-铜作为高效合成全取代二氢呋喃-2(5H)-酮的绿色纳米催化剂

Neda Niknam, N. Noroozi Pesyan
{"title":"GO@ 多巴胺-铜作为高效合成全取代二氢呋喃-2(5H)-酮的绿色纳米催化剂","authors":"Neda Niknam, N. Noroozi Pesyan","doi":"10.18596/jotcsa.1264129","DOIUrl":null,"url":null,"abstract":"A new nanocatalyst graphene oxide@dopamine-Cu was synthesized, and its structure was characterized by fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDX), and thermogravimetric analysis – differential thermal analysis (TGA-DTA) techniques. The three-component one-pot reaction between an arylamine, aromatic aldehyde, and acetylenic carboxylate was achieved and formed methyl 5-oxo-2-aryl-4-(arylamino)-2,5-dihydrofuran-3-carboxylate derivatives (4) in the presence of the catalytic amount of graphene oxide@dopamine-Cu nanocatalyst in high yield. Molecular structures of products were characterized by FT-IR, 1H, 13C nuclear magnetic resonance (NMR), and Mass spectroscopy techniques. Representatively, the mass fragmentation of 4a was discussed, and the structure was confirmed. Easy reaction, high performance, and easy catalyst recyclability are the main advantages of this work. This nanocatalyst is recycled up to five successive runs.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GO@dopamine-Cu as a Green Nanocatalyst for the Efficient Synthesis of Fully Substituted Dihydrofuran-2(5H)-ones\",\"authors\":\"Neda Niknam, N. Noroozi Pesyan\",\"doi\":\"10.18596/jotcsa.1264129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new nanocatalyst graphene oxide@dopamine-Cu was synthesized, and its structure was characterized by fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDX), and thermogravimetric analysis – differential thermal analysis (TGA-DTA) techniques. The three-component one-pot reaction between an arylamine, aromatic aldehyde, and acetylenic carboxylate was achieved and formed methyl 5-oxo-2-aryl-4-(arylamino)-2,5-dihydrofuran-3-carboxylate derivatives (4) in the presence of the catalytic amount of graphene oxide@dopamine-Cu nanocatalyst in high yield. Molecular structures of products were characterized by FT-IR, 1H, 13C nuclear magnetic resonance (NMR), and Mass spectroscopy techniques. Representatively, the mass fragmentation of 4a was discussed, and the structure was confirmed. Easy reaction, high performance, and easy catalyst recyclability are the main advantages of this work. This nanocatalyst is recycled up to five successive runs.\",\"PeriodicalId\":17299,\"journal\":{\"name\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18596/jotcsa.1264129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1264129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成了一种新型纳米催化剂氧化石墨烯@多巴胺-铜,并通过傅立叶变换红外(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量色散 X 射线光谱(EDX)和热重分析-差热分析(TGA-DTA)技术对其结构进行了表征。在催化量的氧化石墨烯@多巴胺-铜纳米催化剂存在下,芳胺、芳香醛和乙炔基羧酸酯实现了三组分一锅反应,并高产率地生成了 5-氧代-2-芳基-4-(芳基氨基)-2,5-二氢呋喃-3-羧酸甲酯衍生物(4)。利用傅立叶变换红外光谱、1H、13C 核磁共振(NMR)和质谱技术对产物的分子结构进行了表征。其中,对 4a 的质量碎片进行了讨论,并确认了其结构。反应简便、性能优异、催化剂易于回收利用是这项工作的主要优点。该纳米催化剂可连续循环使用五次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GO@dopamine-Cu as a Green Nanocatalyst for the Efficient Synthesis of Fully Substituted Dihydrofuran-2(5H)-ones
A new nanocatalyst graphene oxide@dopamine-Cu was synthesized, and its structure was characterized by fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDX), and thermogravimetric analysis – differential thermal analysis (TGA-DTA) techniques. The three-component one-pot reaction between an arylamine, aromatic aldehyde, and acetylenic carboxylate was achieved and formed methyl 5-oxo-2-aryl-4-(arylamino)-2,5-dihydrofuran-3-carboxylate derivatives (4) in the presence of the catalytic amount of graphene oxide@dopamine-Cu nanocatalyst in high yield. Molecular structures of products were characterized by FT-IR, 1H, 13C nuclear magnetic resonance (NMR), and Mass spectroscopy techniques. Representatively, the mass fragmentation of 4a was discussed, and the structure was confirmed. Easy reaction, high performance, and easy catalyst recyclability are the main advantages of this work. This nanocatalyst is recycled up to five successive runs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信