环境温度对大口径火炮引信系统内部弹道过载的影响

Zilong Yang, Deren Kong, Chunyan Zhang
{"title":"环境温度对大口径火炮引信系统内部弹道过载的影响","authors":"Zilong Yang, Deren Kong, Chunyan Zhang","doi":"10.21595/vp.2023.23622","DOIUrl":null,"url":null,"abstract":"The change of ambient temperature will cause the change of gunpowder burning rate, which will directly affect the ballistic performance of the projectile and cause the change of the overload of the projectile fuze system. In this study, the numerical simulation program of the interior trajectory of a large-caliber gun was established by MATLAB, and the variation rules of the corresponding trajectory parameters at different temperatures were obtained. ANSYS finite element software is used to analyze the force of the projectile fuze system under different ambient temperatures. The results show that under the same loading conditions, with the increase of ambient temperature, the maximum pressure in the gun bore and the muzzle velocity of the projectile increase significantly, and the stress and strain of the projectile fuze system in the bore increase gradually. The numerical simulation results are in good agreement with the theory, which reveals the influence of ambient temperature on the overload in the bore of the projectile fuze system to a certain extent, and provides theoretical support for the study of internal ballistics, charge design and gun use.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"139 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of ambient temperature on the internal ballistic overload of a large-caliber artillery projectile fuze system\",\"authors\":\"Zilong Yang, Deren Kong, Chunyan Zhang\",\"doi\":\"10.21595/vp.2023.23622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The change of ambient temperature will cause the change of gunpowder burning rate, which will directly affect the ballistic performance of the projectile and cause the change of the overload of the projectile fuze system. In this study, the numerical simulation program of the interior trajectory of a large-caliber gun was established by MATLAB, and the variation rules of the corresponding trajectory parameters at different temperatures were obtained. ANSYS finite element software is used to analyze the force of the projectile fuze system under different ambient temperatures. The results show that under the same loading conditions, with the increase of ambient temperature, the maximum pressure in the gun bore and the muzzle velocity of the projectile increase significantly, and the stress and strain of the projectile fuze system in the bore increase gradually. The numerical simulation results are in good agreement with the theory, which reveals the influence of ambient temperature on the overload in the bore of the projectile fuze system to a certain extent, and provides theoretical support for the study of internal ballistics, charge design and gun use.\",\"PeriodicalId\":262664,\"journal\":{\"name\":\"Vibroengineering PROCEDIA\",\"volume\":\"139 38\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibroengineering PROCEDIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/vp.2023.23622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibroengineering PROCEDIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/vp.2023.23622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环境温度的变化会引起火药燃烧速率的变化,从而直接影响弹丸的弹道性能,引起弹丸引信系统过载的变化。本研究利用 MATLAB 建立了大口径火炮内部弹道的数值模拟程序,得到了不同温度下相应弹道参数的变化规律。利用 ANSYS 有限元软件分析了不同环境温度下弹丸引信系统的受力情况。结果表明,在相同的加载条件下,随着环境温度的升高,炮膛内的最大压力和弹丸的炮口速度明显增大,弹丸引信系统在炮膛内的应力和应变逐渐增大。数值模拟结果与理论吻合较好,在一定程度上揭示了环境温度对弹丸引信系统膛内过载的影响,为内弹道学研究、装药设计和火炮使用提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of ambient temperature on the internal ballistic overload of a large-caliber artillery projectile fuze system
The change of ambient temperature will cause the change of gunpowder burning rate, which will directly affect the ballistic performance of the projectile and cause the change of the overload of the projectile fuze system. In this study, the numerical simulation program of the interior trajectory of a large-caliber gun was established by MATLAB, and the variation rules of the corresponding trajectory parameters at different temperatures were obtained. ANSYS finite element software is used to analyze the force of the projectile fuze system under different ambient temperatures. The results show that under the same loading conditions, with the increase of ambient temperature, the maximum pressure in the gun bore and the muzzle velocity of the projectile increase significantly, and the stress and strain of the projectile fuze system in the bore increase gradually. The numerical simulation results are in good agreement with the theory, which reveals the influence of ambient temperature on the overload in the bore of the projectile fuze system to a certain extent, and provides theoretical support for the study of internal ballistics, charge design and gun use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信