{"title":"使用进化算法为云计算调度工作流","authors":"M. Kaya, Betül Boz","doi":"10.24012/dumf.1335981","DOIUrl":null,"url":null,"abstract":"Cloud computing provides powerful, highly scalable, flexible resources for real world applications. It also reduces the cost and operation expenses. Workflow scheduling is important for getting higher performance, reducing cost and using resources more efficiently in cloud computing. Workflow scheduling in cloud systems assigns tasks to resources available in the system and aims to utilize cloud resources by decreasing makespan of the workflow. In this study, an evolutionary algorithm is proposed to solve workflow scheduling problem. The main objective of this work is to minimize the makespan of the schedule. To achieve this goal, problem specific crossover operator and mutation operators are proposed in the evolutionary algorithm. The crossover operator will combine the problem-specific information stored in both parents to create a new individual. The mutation operators will explore neighbor solutions using some intelligent search mechanisms. This unique design of the operators increases the diversity of the search space and the quality of the solutions. As a result, the workflow schedules obtained from the evolutionary algorithm decreases the makespan of the workflow in the cloud system. The performance of the proposed study is measured using well-known scientific workflows and is compared with the algorithms from the literature. The proposed study outperforms all related algorithms in 67% of the test cases and obtains the same results in the remaining test cases.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"28 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bulut Hesaplama İçin Evrimsel Algoritma Kullanarak İş Akışı Planlaması\",\"authors\":\"M. Kaya, Betül Boz\",\"doi\":\"10.24012/dumf.1335981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing provides powerful, highly scalable, flexible resources for real world applications. It also reduces the cost and operation expenses. Workflow scheduling is important for getting higher performance, reducing cost and using resources more efficiently in cloud computing. Workflow scheduling in cloud systems assigns tasks to resources available in the system and aims to utilize cloud resources by decreasing makespan of the workflow. In this study, an evolutionary algorithm is proposed to solve workflow scheduling problem. The main objective of this work is to minimize the makespan of the schedule. To achieve this goal, problem specific crossover operator and mutation operators are proposed in the evolutionary algorithm. The crossover operator will combine the problem-specific information stored in both parents to create a new individual. The mutation operators will explore neighbor solutions using some intelligent search mechanisms. This unique design of the operators increases the diversity of the search space and the quality of the solutions. As a result, the workflow schedules obtained from the evolutionary algorithm decreases the makespan of the workflow in the cloud system. The performance of the proposed study is measured using well-known scientific workflows and is compared with the algorithms from the literature. The proposed study outperforms all related algorithms in 67% of the test cases and obtains the same results in the remaining test cases.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"28 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1335981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1335981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bulut Hesaplama İçin Evrimsel Algoritma Kullanarak İş Akışı Planlaması
Cloud computing provides powerful, highly scalable, flexible resources for real world applications. It also reduces the cost and operation expenses. Workflow scheduling is important for getting higher performance, reducing cost and using resources more efficiently in cloud computing. Workflow scheduling in cloud systems assigns tasks to resources available in the system and aims to utilize cloud resources by decreasing makespan of the workflow. In this study, an evolutionary algorithm is proposed to solve workflow scheduling problem. The main objective of this work is to minimize the makespan of the schedule. To achieve this goal, problem specific crossover operator and mutation operators are proposed in the evolutionary algorithm. The crossover operator will combine the problem-specific information stored in both parents to create a new individual. The mutation operators will explore neighbor solutions using some intelligent search mechanisms. This unique design of the operators increases the diversity of the search space and the quality of the solutions. As a result, the workflow schedules obtained from the evolutionary algorithm decreases the makespan of the workflow in the cloud system. The performance of the proposed study is measured using well-known scientific workflows and is compared with the algorithms from the literature. The proposed study outperforms all related algorithms in 67% of the test cases and obtains the same results in the remaining test cases.