基于重构的堆叠稀疏自动编码器用于非线性工业流程故障诊断

Qihang Weng, Shaojun Ren, Baoyu Zhu, Yinfeng Jin, Fengqi Si
{"title":"基于重构的堆叠稀疏自动编码器用于非线性工业流程故障诊断","authors":"Qihang Weng, Shaojun Ren, Baoyu Zhu, Yinfeng Jin, Fengqi Si","doi":"10.17531/ein/175873","DOIUrl":null,"url":null,"abstract":"The reconstruction-based (RB) approach can effectively suppress the misdiagnosis problem due to the smearing effect in fault isolation. However, the current exploration of the RB approach for large-scale nonlinear systems is still limited. Therefore, this paper proposes a reliable and effective fault diagnosis method based on a reconstruction-based stacked sparse autoencoder (RBSSAE) for high-dimensional industrial systems. In RBSSAE, a reconstruction-based index achieved by the Steffensen iterative method is developed to check whether the given variable(s) are responsible for the faults efficiently. However, the number of possible faulty variable combinations grows exponentially with the system dimension or actual abnormal variables, causing an unbearable computational burden. Hence, the proposed RBSSAE utilizes a sequential floating forward selection approach to rapidly isolate the most decisive variable combination, meeting a requirement of online fault diagnosis. Finally, the effectiveness of the RBSSAE is verified on a numerical example and a real industrial case.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction-based stacked sparse auto-encoder for nonlinear industrial process fault diagnosis\",\"authors\":\"Qihang Weng, Shaojun Ren, Baoyu Zhu, Yinfeng Jin, Fengqi Si\",\"doi\":\"10.17531/ein/175873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reconstruction-based (RB) approach can effectively suppress the misdiagnosis problem due to the smearing effect in fault isolation. However, the current exploration of the RB approach for large-scale nonlinear systems is still limited. Therefore, this paper proposes a reliable and effective fault diagnosis method based on a reconstruction-based stacked sparse autoencoder (RBSSAE) for high-dimensional industrial systems. In RBSSAE, a reconstruction-based index achieved by the Steffensen iterative method is developed to check whether the given variable(s) are responsible for the faults efficiently. However, the number of possible faulty variable combinations grows exponentially with the system dimension or actual abnormal variables, causing an unbearable computational burden. Hence, the proposed RBSSAE utilizes a sequential floating forward selection approach to rapidly isolate the most decisive variable combination, meeting a requirement of online fault diagnosis. Finally, the effectiveness of the RBSSAE is verified on a numerical example and a real industrial case.\",\"PeriodicalId\":335030,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/175873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/175873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于重构(RB)的方法可以有效抑制故障隔离中由于涂抹效应造成的误诊问题。然而,目前针对大规模非线性系统的 RB 方法探索还很有限。因此,本文针对高维工业系统提出了一种基于重构的堆叠稀疏自动编码器(RBSSAE)的可靠而有效的故障诊断方法。在 RBSSAE 中,通过 Steffensen 迭代法建立了一个基于重构的指标,以有效检查给定变量是否是故障原因。然而,可能的故障变量组合数量会随着系统维度或实际异常变量的增加而呈指数增长,造成难以承受的计算负担。因此,所提出的 RBSSAE 利用顺序浮动前向选择方法,快速分离出最具决定性的变量组合,满足了在线故障诊断的要求。最后,RBSSAE 的有效性在一个数值示例和一个实际工业案例中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction-based stacked sparse auto-encoder for nonlinear industrial process fault diagnosis
The reconstruction-based (RB) approach can effectively suppress the misdiagnosis problem due to the smearing effect in fault isolation. However, the current exploration of the RB approach for large-scale nonlinear systems is still limited. Therefore, this paper proposes a reliable and effective fault diagnosis method based on a reconstruction-based stacked sparse autoencoder (RBSSAE) for high-dimensional industrial systems. In RBSSAE, a reconstruction-based index achieved by the Steffensen iterative method is developed to check whether the given variable(s) are responsible for the faults efficiently. However, the number of possible faulty variable combinations grows exponentially with the system dimension or actual abnormal variables, causing an unbearable computational burden. Hence, the proposed RBSSAE utilizes a sequential floating forward selection approach to rapidly isolate the most decisive variable combination, meeting a requirement of online fault diagnosis. Finally, the effectiveness of the RBSSAE is verified on a numerical example and a real industrial case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信