利用逻辑图进行数字图像加密

Muhammad Rizki, Erik Iman, Heri Ujianto, Rianto
{"title":"利用逻辑图进行数字图像加密","authors":"Muhammad Rizki, Erik Iman, Heri Ujianto, Rianto","doi":"10.29207/resti.v7i6.5389","DOIUrl":null,"url":null,"abstract":"This study focuses on the application of the Logistic Map algorithm in the Python programming language for digital image encryption and decryption. It investigates the impact of image type, image size, and Logistic Map parameter values on computational speed, memory usage, encryption, and decryption results. Three image sizes (300px x 300px, 500px x 500px, and 1024px x 1024px) in TIFF, JPG, and PNG formats are considered. The Digital Image Encryption and Decryption process utilizes the Logistic Map algorithm implemented in Python. Various parameter values are tested for each image type and size to analyze the encryption and decryption outcomes. The findings indicate that image type does not affect memory usage, which remains consistent regardless of image type. However, image type significantly influences Decryption results and computation time. Notably, the TIFF image type exhibits the fastest computation time, with durations of 0.17188 seconds, 0.28125 seconds, and 1.10938 seconds for 300px x 300px, 500px x 500px, and 1024px x 1024px images, respectively. Additionally, the encryption results vary depending on the image type. The Logistic Map algorithm is unable to restore encryption results accurately for JPG images. Furthermore, the research highlights that higher values of x, Mu, and Chaos lead to narrower histogram values, resulting in improved encryption outcomes. This study contributes to the field by exploring the application of the Logistic Map algorithm in Python and analyzing the effects of image type, image size, and Logistic Map parameter values on computation time, memory usage, and Digital Image Encryption and Decryption results. Prior research has not extensively addressed these aspects in relation to the Logistic Map algorithm in Python","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Image Encryption Using Logistic Map\",\"authors\":\"Muhammad Rizki, Erik Iman, Heri Ujianto, Rianto\",\"doi\":\"10.29207/resti.v7i6.5389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the application of the Logistic Map algorithm in the Python programming language for digital image encryption and decryption. It investigates the impact of image type, image size, and Logistic Map parameter values on computational speed, memory usage, encryption, and decryption results. Three image sizes (300px x 300px, 500px x 500px, and 1024px x 1024px) in TIFF, JPG, and PNG formats are considered. The Digital Image Encryption and Decryption process utilizes the Logistic Map algorithm implemented in Python. Various parameter values are tested for each image type and size to analyze the encryption and decryption outcomes. The findings indicate that image type does not affect memory usage, which remains consistent regardless of image type. However, image type significantly influences Decryption results and computation time. Notably, the TIFF image type exhibits the fastest computation time, with durations of 0.17188 seconds, 0.28125 seconds, and 1.10938 seconds for 300px x 300px, 500px x 500px, and 1024px x 1024px images, respectively. Additionally, the encryption results vary depending on the image type. The Logistic Map algorithm is unable to restore encryption results accurately for JPG images. Furthermore, the research highlights that higher values of x, Mu, and Chaos lead to narrower histogram values, resulting in improved encryption outcomes. This study contributes to the field by exploring the application of the Logistic Map algorithm in Python and analyzing the effects of image type, image size, and Logistic Map parameter values on computation time, memory usage, and Digital Image Encryption and Decryption results. Prior research has not extensively addressed these aspects in relation to the Logistic Map algorithm in Python\",\"PeriodicalId\":435683,\"journal\":{\"name\":\"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29207/resti.v7i6.5389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i6.5389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是在 Python 编程语言中应用 Logistic Map 算法进行数字图像加密和解密。它研究了图像类型、图像大小和 Logistic Map 参数值对计算速度、内存使用、加密和解密结果的影响。研究考虑了 TIFF、JPG 和 PNG 格式的三种图像大小(300px x 300px、500px x 500px 和 1024px x 1024px)。数字图像加密和解密过程采用了 Python 中的 Logistic Map 算法。针对每种图像类型和大小测试了各种参数值,以分析加密和解密结果。研究结果表明,图像类型不会影响内存使用量,无论图像类型如何,内存使用量都保持一致。但是,图像类型对解密结果和计算时间有很大影响。值得注意的是,TIFF 图像类型的计算时间最快,300px x 300px、500px x 500px 和 1024px x 1024px 图像的计算时间分别为 0.17188 秒、0.28125 秒和 1.10938 秒。此外,图像类型不同,加密结果也不同。Logistic Map 算法无法准确还原 JPG 图像的加密结果。此外,研究还强调,x、Mu 和 Chaos 值越高,直方图值越窄,加密结果越好。本研究探索了 Logistic Map 算法在 Python 中的应用,分析了图像类型、图像大小和 Logistic Map 参数值对计算时间、内存使用以及数字图像加密和解密结果的影响,为该领域做出了贡献。之前的研究尚未广泛涉及与 Python 中的 Logistic Map 算法相关的这些方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital Image Encryption Using Logistic Map
This study focuses on the application of the Logistic Map algorithm in the Python programming language for digital image encryption and decryption. It investigates the impact of image type, image size, and Logistic Map parameter values on computational speed, memory usage, encryption, and decryption results. Three image sizes (300px x 300px, 500px x 500px, and 1024px x 1024px) in TIFF, JPG, and PNG formats are considered. The Digital Image Encryption and Decryption process utilizes the Logistic Map algorithm implemented in Python. Various parameter values are tested for each image type and size to analyze the encryption and decryption outcomes. The findings indicate that image type does not affect memory usage, which remains consistent regardless of image type. However, image type significantly influences Decryption results and computation time. Notably, the TIFF image type exhibits the fastest computation time, with durations of 0.17188 seconds, 0.28125 seconds, and 1.10938 seconds for 300px x 300px, 500px x 500px, and 1024px x 1024px images, respectively. Additionally, the encryption results vary depending on the image type. The Logistic Map algorithm is unable to restore encryption results accurately for JPG images. Furthermore, the research highlights that higher values of x, Mu, and Chaos lead to narrower histogram values, resulting in improved encryption outcomes. This study contributes to the field by exploring the application of the Logistic Map algorithm in Python and analyzing the effects of image type, image size, and Logistic Map parameter values on computation time, memory usage, and Digital Image Encryption and Decryption results. Prior research has not extensively addressed these aspects in relation to the Logistic Map algorithm in Python
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信