多项式环上 2 阶矩阵环中的同位元素 $\mathbb{Z}_{p^2q}[x]$

Muchammad Choerul Arifin, Iwan Ernanto
{"title":"多项式环上 2 阶矩阵环中的同位元素 $\\mathbb{Z}_{p^2q}[x]$","authors":"Muchammad Choerul Arifin, Iwan Ernanto","doi":"10.14710/jfma.v6i2.19307","DOIUrl":null,"url":null,"abstract":"An idempotent element in the algebraic structure of a ring is an element that, when multiplied by itself, yields an outcome that remains unchanged and identical to the original element. Any ring with a unity element generally has two idempotent elements, 0 and 1, these particular idempotent elements are commonly referred to as the trivial idempotent elements However, in the case of rings $\\mathbb{Z}_n$ and $\\mathbb{Z}_n[x]$ it is possible to have non-trivial idempotent elements. In this paper, we will investigate the idempotent elements in the polynomial ring $\\mathbb{Z}_{p^2q}[x]$ with $p,q$ different primes. Furthermore, the form and characteristics of non-trivial idempotent elements in $M_2(\\mathbb{Z}_{p^2q}[x])$ will be investigated. The results showed that there are 4 idempotent elements in $\\mathbb{Z}_{p^2q}[x]$ and 7 idempotent elements in $M_2(\\mathbb{Z}_{p^2q}[x])$.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IDEMPOTENT ELEMENTS IN MATRIX RING OF ORDER 2 OVER POLYNOMIAL RING $\\\\mathbb{Z}_{p^2q}[x]$\",\"authors\":\"Muchammad Choerul Arifin, Iwan Ernanto\",\"doi\":\"10.14710/jfma.v6i2.19307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An idempotent element in the algebraic structure of a ring is an element that, when multiplied by itself, yields an outcome that remains unchanged and identical to the original element. Any ring with a unity element generally has two idempotent elements, 0 and 1, these particular idempotent elements are commonly referred to as the trivial idempotent elements However, in the case of rings $\\\\mathbb{Z}_n$ and $\\\\mathbb{Z}_n[x]$ it is possible to have non-trivial idempotent elements. In this paper, we will investigate the idempotent elements in the polynomial ring $\\\\mathbb{Z}_{p^2q}[x]$ with $p,q$ different primes. Furthermore, the form and characteristics of non-trivial idempotent elements in $M_2(\\\\mathbb{Z}_{p^2q}[x])$ will be investigated. The results showed that there are 4 idempotent elements in $\\\\mathbb{Z}_{p^2q}[x]$ and 7 idempotent elements in $M_2(\\\\mathbb{Z}_{p^2q}[x])$.\",\"PeriodicalId\":359074,\"journal\":{\"name\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jfma.v6i2.19307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v6i2.19307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在环的代数结构中,幂等元是指当与自身相乘时,得到的结果与原始元素保持不变和相同的元素。然而,对于$\mathbb{Z}_n$和$\mathbb{Z}_n[x]$环,有可能存在非三等幂元素。本文将研究多项式环$\mathbb{Z}_{p^2q}[x]$中$p,q$不同素数的幂等元。此外,还将研究 $M_2(\mathbb{Z}_{p^2q}[x])$中非三等幂元素的形式和特征。结果表明,$\mathbb{Z}_{p^2q}[x]$ 中有 4 个等幂元素,$M_2(\mathbb{Z}_{p^2q}[x])$ 中有 7 个等幂元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IDEMPOTENT ELEMENTS IN MATRIX RING OF ORDER 2 OVER POLYNOMIAL RING $\mathbb{Z}_{p^2q}[x]$
An idempotent element in the algebraic structure of a ring is an element that, when multiplied by itself, yields an outcome that remains unchanged and identical to the original element. Any ring with a unity element generally has two idempotent elements, 0 and 1, these particular idempotent elements are commonly referred to as the trivial idempotent elements However, in the case of rings $\mathbb{Z}_n$ and $\mathbb{Z}_n[x]$ it is possible to have non-trivial idempotent elements. In this paper, we will investigate the idempotent elements in the polynomial ring $\mathbb{Z}_{p^2q}[x]$ with $p,q$ different primes. Furthermore, the form and characteristics of non-trivial idempotent elements in $M_2(\mathbb{Z}_{p^2q}[x])$ will be investigated. The results showed that there are 4 idempotent elements in $\mathbb{Z}_{p^2q}[x]$ and 7 idempotent elements in $M_2(\mathbb{Z}_{p^2q}[x])$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信