大地最小二乘法:利用信息几何进行稳健回归

G. Verdoolaege
{"title":"大地最小二乘法:利用信息几何进行稳健回归","authors":"G. Verdoolaege","doi":"10.3390/psf2023009005","DOIUrl":null,"url":null,"abstract":": Geodesic least squares (GLS) is a regression technique that operates in spaces of probability distributions. Based on the minimization of the Rao geodesic distance between two probability models of the response variable, GLS is robust against outliers and model misspecification. The method is very simple, without any tuning parameters, owing to its solid foundations rooted in information geometry. Here, we illustrate the robustness properties of GLS using applications in the fields of magnetic confinement fusion and astrophysics. Additional interpretation is gained from visualizations using several models for the manifold of Gaussian probability distributions.","PeriodicalId":506244,"journal":{"name":"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geodesic Least Squares: Robust Regression Using Information Geometry\",\"authors\":\"G. Verdoolaege\",\"doi\":\"10.3390/psf2023009005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Geodesic least squares (GLS) is a regression technique that operates in spaces of probability distributions. Based on the minimization of the Rao geodesic distance between two probability models of the response variable, GLS is robust against outliers and model misspecification. The method is very simple, without any tuning parameters, owing to its solid foundations rooted in information geometry. Here, we illustrate the robustness properties of GLS using applications in the fields of magnetic confinement fusion and astrophysics. Additional interpretation is gained from visualizations using several models for the manifold of Gaussian probability distributions.\",\"PeriodicalId\":506244,\"journal\":{\"name\":\"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/psf2023009005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psf2023009005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:大地最小二乘法(GLS)是一种在概率分布空间中运行的回归技术。基于最小化响应变量两个概率模型之间的 Rao 大地测量距离,GLS 对异常值和模型误设具有鲁棒性。由于其扎根于信息几何学的坚实基础,该方法非常简单,无需任何调整参数。在此,我们通过磁聚变和天体物理学领域的应用来说明 GLS 的稳健性。此外,我们还利用高斯概率分布流形的几个模型,通过可视化的方式对其进行了进一步的诠释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesic Least Squares: Robust Regression Using Information Geometry
: Geodesic least squares (GLS) is a regression technique that operates in spaces of probability distributions. Based on the minimization of the Rao geodesic distance between two probability models of the response variable, GLS is robust against outliers and model misspecification. The method is very simple, without any tuning parameters, owing to its solid foundations rooted in information geometry. Here, we illustrate the robustness properties of GLS using applications in the fields of magnetic confinement fusion and astrophysics. Additional interpretation is gained from visualizations using several models for the manifold of Gaussian probability distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信