总顶点不规则强度猜想的反例

IF 1 Q1 MATHEMATICS
Faisal Susanto, R. Simanjuntak, E. Baskoro
{"title":"总顶点不规则强度猜想的反例","authors":"Faisal Susanto, R. Simanjuntak, E. Baskoro","doi":"10.47443/dml.2023.111","DOIUrl":null,"url":null,"abstract":"The total vertex irregularity strength tvs( G ) of a simple graph G ( V, E ) is the smallest positive integer k so that there exists a function ϕ : V ∪ E → [1 , k ] provided that all vertex-weights are distinct, where a vertex-weight is the sum of labels of a vertex and all of its incident edges. In the paper [Nurdin, E. T. Baskoro, A. N. M. Salman, N. N. Gaos, Discrete Math. 310 (2010) 3043–3048], two conjectures regarding the total vertex irregularity strength of trees and general graphs were posed as follows: (i) for every tree T , tvs( T ) = max {(cid:100) ( n 1 + 1) / 2 (cid:101) , (cid:100) ( n 1 + n 2 + 1) / 3 (cid:101) , (cid:100) ( n 1 + n 2 + n 3 + 1) / 4 (cid:101)} , and (ii) for every graph G with minimum degree δ and maximum degree ∆ , tvs( G ) = max {(cid:100) ( δ + (cid:80) i j =1 n j ) / ( i + 1) (cid:101) : i ∈ [ δ, ∆] } , where n j denotes the number of vertices of degree j . In this paper, we disprove both of these conjectures by giving infinite families of counterexamples.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterexamples to the total vertex irregularity strength’s conjectures\",\"authors\":\"Faisal Susanto, R. Simanjuntak, E. Baskoro\",\"doi\":\"10.47443/dml.2023.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The total vertex irregularity strength tvs( G ) of a simple graph G ( V, E ) is the smallest positive integer k so that there exists a function ϕ : V ∪ E → [1 , k ] provided that all vertex-weights are distinct, where a vertex-weight is the sum of labels of a vertex and all of its incident edges. In the paper [Nurdin, E. T. Baskoro, A. N. M. Salman, N. N. Gaos, Discrete Math. 310 (2010) 3043–3048], two conjectures regarding the total vertex irregularity strength of trees and general graphs were posed as follows: (i) for every tree T , tvs( T ) = max {(cid:100) ( n 1 + 1) / 2 (cid:101) , (cid:100) ( n 1 + n 2 + 1) / 3 (cid:101) , (cid:100) ( n 1 + n 2 + n 3 + 1) / 4 (cid:101)} , and (ii) for every graph G with minimum degree δ and maximum degree ∆ , tvs( G ) = max {(cid:100) ( δ + (cid:80) i j =1 n j ) / ( i + 1) (cid:101) : i ∈ [ δ, ∆] } , where n j denotes the number of vertices of degree j . In this paper, we disprove both of these conjectures by giving infinite families of counterexamples.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

简单图 G ( V, E ) 的总顶点不规则强度 tvs( G ) 是存在一个函数 ϕ : V ∪ E → [1 , k ] 的最小正整数,条件是所有顶点权重都是不同的,其中顶点权重是一个顶点及其所有入射边的标签之和。在论文 [Nurdin, E. T. Baskoro, A. N. M. Salman, N. N. Gaos, Discrete Math.310 (2010) 3043-3048] 中,提出了关于树和一般图的总顶点不规则强度的两个猜想如下:(i) 对于每一棵树 T , tvs( T ) = max {(cid:100) ( n 1 + 1) / 2 (cid:101) , (cid:100) ( n 1 + n 2 + 1) / 3 (cid:101) , (cid:100) ( n 1 + n 2 + n 3 + 1) / 4 (cid:(ii) 对于具有最小度 δ 和最大度 ∆ 的每个图 G,tvs( G ) = max {(cid:100) ( δ + (cid:80) i j =1 n j ) / ( i + 1) (cid:101) : i∈ [ δ, ∆] } ,其中 n j 表示图 G 的个数。}其中 n j 表示度数为 j 的顶点数。在本文中,我们通过给出有限的反例族来反证这两个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterexamples to the total vertex irregularity strength’s conjectures
The total vertex irregularity strength tvs( G ) of a simple graph G ( V, E ) is the smallest positive integer k so that there exists a function ϕ : V ∪ E → [1 , k ] provided that all vertex-weights are distinct, where a vertex-weight is the sum of labels of a vertex and all of its incident edges. In the paper [Nurdin, E. T. Baskoro, A. N. M. Salman, N. N. Gaos, Discrete Math. 310 (2010) 3043–3048], two conjectures regarding the total vertex irregularity strength of trees and general graphs were posed as follows: (i) for every tree T , tvs( T ) = max {(cid:100) ( n 1 + 1) / 2 (cid:101) , (cid:100) ( n 1 + n 2 + 1) / 3 (cid:101) , (cid:100) ( n 1 + n 2 + n 3 + 1) / 4 (cid:101)} , and (ii) for every graph G with minimum degree δ and maximum degree ∆ , tvs( G ) = max {(cid:100) ( δ + (cid:80) i j =1 n j ) / ( i + 1) (cid:101) : i ∈ [ δ, ∆] } , where n j denotes the number of vertices of degree j . In this paper, we disprove both of these conjectures by giving infinite families of counterexamples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信