Chunyun Meng, Ernest Domanaanmwi Ganaa, Bin Wu, Zhen Tan, Li Luan
{"title":"通过身体拓扑信息还原和相似性评估进行反咬合人员再识别","authors":"Chunyun Meng, Ernest Domanaanmwi Ganaa, Bin Wu, Zhen Tan, Li Luan","doi":"10.1049/cvi2.12256","DOIUrl":null,"url":null,"abstract":"<p>In real-world scenarios, pedestrian images often suffer from occlusion, where certain body features become invisible, making it challenging for existing methods to accurately identify pedestrians with the same ID. Traditional approaches typically focus on matching only the visible body parts, which can lead to misalignment when the occlusion patterns vary. To address this issue and alleviate misalignment in occluded pedestrian images, the authors propose a novel framework called body topology information generation and matching. The framework consists of two main modules: the body topology information generation module and the body topology information matching module. The body topology information generation module employs an adaptive detection mechanism and capsule generative adversarial network to restore a holistic pedestrian image while preserving the body topology information. The body topology information matching module leverages the restored holistic image from body topology information generation to overcome spatial misalignment and utilises cosine distance as the similarity measure for matching. By combining the body topology information generation and body topology information matching modules, the authors achieve consistency in the body topology information features of pedestrian images, ranging from restoration to retrieval. Extensive experiments are conducted on both holistic person re-identification datasets (Market-1501, DukeMTMC-ReID) and occluded person re-identification datasets (Occluded-DukeMTMC, Occluded-ReID). The results demonstrate the superior performance of the authors proposed model, and visualisations of the generation and matching modules are provided to illustrate their effectiveness. Furthermore, an ablation study is conducted to validate the contributions of the proposed framework.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 3","pages":"393-404"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12256","citationCount":"0","resultStr":"{\"title\":\"Anti-occlusion person re-identification via body topology information restoration and similarity evaluation\",\"authors\":\"Chunyun Meng, Ernest Domanaanmwi Ganaa, Bin Wu, Zhen Tan, Li Luan\",\"doi\":\"10.1049/cvi2.12256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In real-world scenarios, pedestrian images often suffer from occlusion, where certain body features become invisible, making it challenging for existing methods to accurately identify pedestrians with the same ID. Traditional approaches typically focus on matching only the visible body parts, which can lead to misalignment when the occlusion patterns vary. To address this issue and alleviate misalignment in occluded pedestrian images, the authors propose a novel framework called body topology information generation and matching. The framework consists of two main modules: the body topology information generation module and the body topology information matching module. The body topology information generation module employs an adaptive detection mechanism and capsule generative adversarial network to restore a holistic pedestrian image while preserving the body topology information. The body topology information matching module leverages the restored holistic image from body topology information generation to overcome spatial misalignment and utilises cosine distance as the similarity measure for matching. By combining the body topology information generation and body topology information matching modules, the authors achieve consistency in the body topology information features of pedestrian images, ranging from restoration to retrieval. Extensive experiments are conducted on both holistic person re-identification datasets (Market-1501, DukeMTMC-ReID) and occluded person re-identification datasets (Occluded-DukeMTMC, Occluded-ReID). The results demonstrate the superior performance of the authors proposed model, and visualisations of the generation and matching modules are provided to illustrate their effectiveness. Furthermore, an ablation study is conducted to validate the contributions of the proposed framework.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 3\",\"pages\":\"393-404\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12256\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12256\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12256","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Anti-occlusion person re-identification via body topology information restoration and similarity evaluation
In real-world scenarios, pedestrian images often suffer from occlusion, where certain body features become invisible, making it challenging for existing methods to accurately identify pedestrians with the same ID. Traditional approaches typically focus on matching only the visible body parts, which can lead to misalignment when the occlusion patterns vary. To address this issue and alleviate misalignment in occluded pedestrian images, the authors propose a novel framework called body topology information generation and matching. The framework consists of two main modules: the body topology information generation module and the body topology information matching module. The body topology information generation module employs an adaptive detection mechanism and capsule generative adversarial network to restore a holistic pedestrian image while preserving the body topology information. The body topology information matching module leverages the restored holistic image from body topology information generation to overcome spatial misalignment and utilises cosine distance as the similarity measure for matching. By combining the body topology information generation and body topology information matching modules, the authors achieve consistency in the body topology information features of pedestrian images, ranging from restoration to retrieval. Extensive experiments are conducted on both holistic person re-identification datasets (Market-1501, DukeMTMC-ReID) and occluded person re-identification datasets (Occluded-DukeMTMC, Occluded-ReID). The results demonstrate the superior performance of the authors proposed model, and visualisations of the generation and matching modules are provided to illustrate their effectiveness. Furthermore, an ablation study is conducted to validate the contributions of the proposed framework.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf