为三相电压源逆变器开发各种基于独立相位的脉宽调制技术

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Machines Pub Date : 2023-11-27 DOI:10.3390/machines11121054
M. Nguyen, S. Kwak, Seung-duck Choi
{"title":"为三相电压源逆变器开发各种基于独立相位的脉宽调制技术","authors":"M. Nguyen, S. Kwak, Seung-duck Choi","doi":"10.3390/machines11121054","DOIUrl":null,"url":null,"abstract":"Discontinuous pulse-width-modulation (DPWM) methods have been extensively used in the industrial area to reduce overall losses, which decreases the corresponding thermal stress on the power switches of converters. However, local thermal overload can arise due to different aging conditions of semiconductor devices or failure in the cooling system. This leads to reduced reliability of the converter system due to the low expected lifespan of the most aged switches or phase legs. In this paper, the modified DPWM strategies for independent control of per-phase switching loss are introduced to deal with this matter. The proposed per-phase DPWM techniques are generated by modifying the conventional three-phase DPWM methods for reducing the switching loss in a specific leg, whereas the output performance is not degraded. This paper reports on output performance, including output current total harmonic distortion (THD) and power loss of switching devices, analysis for the various modified DPWM strategies for independent control of per-phase switching loss, which is applicable in 2-level 3-phase voltage source inverters (2L3P VSIs). The results are compared to the corresponding continuous PWM technique to verify and analyze the effectiveness and accuracy of the modified DPWM strategies for independent control of per-phase switching loss.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"4 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Various Types of Independent Phase Based Pulsewidth Modulation Techniques for Three-Phase Voltage Source Inverters\",\"authors\":\"M. Nguyen, S. Kwak, Seung-duck Choi\",\"doi\":\"10.3390/machines11121054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discontinuous pulse-width-modulation (DPWM) methods have been extensively used in the industrial area to reduce overall losses, which decreases the corresponding thermal stress on the power switches of converters. However, local thermal overload can arise due to different aging conditions of semiconductor devices or failure in the cooling system. This leads to reduced reliability of the converter system due to the low expected lifespan of the most aged switches or phase legs. In this paper, the modified DPWM strategies for independent control of per-phase switching loss are introduced to deal with this matter. The proposed per-phase DPWM techniques are generated by modifying the conventional three-phase DPWM methods for reducing the switching loss in a specific leg, whereas the output performance is not degraded. This paper reports on output performance, including output current total harmonic distortion (THD) and power loss of switching devices, analysis for the various modified DPWM strategies for independent control of per-phase switching loss, which is applicable in 2-level 3-phase voltage source inverters (2L3P VSIs). The results are compared to the corresponding continuous PWM technique to verify and analyze the effectiveness and accuracy of the modified DPWM strategies for independent control of per-phase switching loss.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11121054\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

非连续脉宽调制(DPWM)方法已广泛应用于工业领域,以降低整体损耗,从而减少转换器功率开关的相应热应力。然而,由于半导体器件的不同老化条件或冷却系统的故障,可能会导致局部热过载。由于老化最严重的开关或相脚的预期寿命较低,这会导致变流器系统的可靠性降低。本文介绍了用于独立控制每相开关损耗的改进型 DPWM 策略,以解决这一问题。所提出的每相 DPWM 技术是通过修改传统的三相 DPWM 方法产生的,用于降低特定相脚的开关损耗,而输出性能不会降低。本文报告了输出性能,包括输出电流总谐波失真(THD)和开关设备的功率损耗,分析了用于独立控制每相开关损耗的各种改进型 DPWM 策略,这些策略适用于两电平三相电压源逆变器(2L3P VSI)。结果与相应的连续 PWM 技术进行了比较,以验证和分析用于独立控制每相开关损耗的改进型 DPWM 策略的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Various Types of Independent Phase Based Pulsewidth Modulation Techniques for Three-Phase Voltage Source Inverters
Discontinuous pulse-width-modulation (DPWM) methods have been extensively used in the industrial area to reduce overall losses, which decreases the corresponding thermal stress on the power switches of converters. However, local thermal overload can arise due to different aging conditions of semiconductor devices or failure in the cooling system. This leads to reduced reliability of the converter system due to the low expected lifespan of the most aged switches or phase legs. In this paper, the modified DPWM strategies for independent control of per-phase switching loss are introduced to deal with this matter. The proposed per-phase DPWM techniques are generated by modifying the conventional three-phase DPWM methods for reducing the switching loss in a specific leg, whereas the output performance is not degraded. This paper reports on output performance, including output current total harmonic distortion (THD) and power loss of switching devices, analysis for the various modified DPWM strategies for independent control of per-phase switching loss, which is applicable in 2-level 3-phase voltage source inverters (2L3P VSIs). The results are compared to the corresponding continuous PWM technique to verify and analyze the effectiveness and accuracy of the modified DPWM strategies for independent control of per-phase switching loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信