Xiao Zhang, Lihui Wang, Yuan He, Zhiwei Mou, Yiqi Cao
{"title":"基于双环红外照明光源同步图像采集机制的高速眼动追踪技术","authors":"Xiao Zhang, Lihui Wang, Yuan He, Zhiwei Mou, Yiqi Cao","doi":"10.1117/12.2686717","DOIUrl":null,"url":null,"abstract":"It is a challenge for conventional monocular-camera single-light source eye tracking methods to achieve high-speed eye tracking. Human gaze motion is a high-speed and miniature eye movement. Eye tracking requires a high-speed sampling frequency. In this work, an eye tracking method was proposed to overcomes the above limitation. The dual-ring infrared lighting source was designed to achieve bright and dark pupils in high-speed. The eye tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The detection time of each frame was less than five milliseconds, which achieved the purpose of high-speed eye tracking of the human gaze.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"14 7","pages":"127660F - 127660F-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-speed eye tracking based on a synchronized image acquisition mechanism by dual-ring infrared lighting source\",\"authors\":\"Xiao Zhang, Lihui Wang, Yuan He, Zhiwei Mou, Yiqi Cao\",\"doi\":\"10.1117/12.2686717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a challenge for conventional monocular-camera single-light source eye tracking methods to achieve high-speed eye tracking. Human gaze motion is a high-speed and miniature eye movement. Eye tracking requires a high-speed sampling frequency. In this work, an eye tracking method was proposed to overcomes the above limitation. The dual-ring infrared lighting source was designed to achieve bright and dark pupils in high-speed. The eye tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The detection time of each frame was less than five milliseconds, which achieved the purpose of high-speed eye tracking of the human gaze.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"14 7\",\"pages\":\"127660F - 127660F-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2686717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2686717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-speed eye tracking based on a synchronized image acquisition mechanism by dual-ring infrared lighting source
It is a challenge for conventional monocular-camera single-light source eye tracking methods to achieve high-speed eye tracking. Human gaze motion is a high-speed and miniature eye movement. Eye tracking requires a high-speed sampling frequency. In this work, an eye tracking method was proposed to overcomes the above limitation. The dual-ring infrared lighting source was designed to achieve bright and dark pupils in high-speed. The eye tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The detection time of each frame was less than five milliseconds, which achieved the purpose of high-speed eye tracking of the human gaze.