{"title":"使用功率激光对块状材料进行布里渊散射测量的不确定性","authors":"Patrice Salzenstein, Thomas Y. Wu","doi":"10.1117/12.2689285","DOIUrl":null,"url":null,"abstract":"Through this paper, we describe the method leading to the estimation of the uncertainty. We aim to give an estimation of the uncertainty on the frequency peak by Brillouin Scattering Stimulation. It corresponds to the speed of phonons inside a material excited by a 532nm wavelength laser. The guideline follows the Guide to the Expression of Uncertainty in Measurement and its estimation is of 0.26% on the Brillouin frequency peak at 15.70 GHz for polymethyl methacrylate (PMMA).","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"22 1","pages":"127600M - 127600M-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty on Brillouin scattering measurements on bulk materials using a power laser\",\"authors\":\"Patrice Salzenstein, Thomas Y. Wu\",\"doi\":\"10.1117/12.2689285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through this paper, we describe the method leading to the estimation of the uncertainty. We aim to give an estimation of the uncertainty on the frequency peak by Brillouin Scattering Stimulation. It corresponds to the speed of phonons inside a material excited by a 532nm wavelength laser. The guideline follows the Guide to the Expression of Uncertainty in Measurement and its estimation is of 0.26% on the Brillouin frequency peak at 15.70 GHz for polymethyl methacrylate (PMMA).\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"22 1\",\"pages\":\"127600M - 127600M-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2689285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2689285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncertainty on Brillouin scattering measurements on bulk materials using a power laser
Through this paper, we describe the method leading to the estimation of the uncertainty. We aim to give an estimation of the uncertainty on the frequency peak by Brillouin Scattering Stimulation. It corresponds to the speed of phonons inside a material excited by a 532nm wavelength laser. The guideline follows the Guide to the Expression of Uncertainty in Measurement and its estimation is of 0.26% on the Brillouin frequency peak at 15.70 GHz for polymethyl methacrylate (PMMA).