地表和钻孔地动响应谱的特征周期

Qingshuang Su, Yinfeng Dong, Feiyu Guo, Xingyu Zhang
{"title":"地表和钻孔地动响应谱的特征周期","authors":"Qingshuang Su, Yinfeng Dong, Feiyu Guo, Xingyu Zhang","doi":"10.21595/vp.2023.23734","DOIUrl":null,"url":null,"abstract":"Determining the characteristic period of ground motions (Tg) is an essential step in the seismic design of structures, but a critical problem that needs to be solved is figuring out how to do so when bedrock ground motion is utilized as an input. In this paper, the relationship between surface and borehole temperature data is investigated, and the main factors affecting the Tg are analyzed. Then, the algorithm for predicting Tg is presented. It is found that two factors, i.e., peak ground acceleration (PGA) and fault distance have significant effects on the value of Tg. By comparing the values of Tg for borehole and surface motions, we find that, contrary to expectation, Tg for borehole motions is usually larger than that for surface motions in most cases. Finally, the conversion equation between the Tg for borehole and surface motions is given using regression analysis.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristic period of response spectrum for surface and borehole ground motions\",\"authors\":\"Qingshuang Su, Yinfeng Dong, Feiyu Guo, Xingyu Zhang\",\"doi\":\"10.21595/vp.2023.23734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the characteristic period of ground motions (Tg) is an essential step in the seismic design of structures, but a critical problem that needs to be solved is figuring out how to do so when bedrock ground motion is utilized as an input. In this paper, the relationship between surface and borehole temperature data is investigated, and the main factors affecting the Tg are analyzed. Then, the algorithm for predicting Tg is presented. It is found that two factors, i.e., peak ground acceleration (PGA) and fault distance have significant effects on the value of Tg. By comparing the values of Tg for borehole and surface motions, we find that, contrary to expectation, Tg for borehole motions is usually larger than that for surface motions in most cases. Finally, the conversion equation between the Tg for borehole and surface motions is given using regression analysis.\",\"PeriodicalId\":262664,\"journal\":{\"name\":\"Vibroengineering PROCEDIA\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibroengineering PROCEDIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/vp.2023.23734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibroengineering PROCEDIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/vp.2023.23734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定地震动的特征周期(Tg)是结构抗震设计中的一个重要步骤,但需要解决的一个关键问题是如何在利用基岩地震动作为输入时确定特征周期。本文研究了地表温度数据与钻孔温度数据之间的关系,并分析了影响 Tg 的主要因素。然后,介绍了预测 Tg 的算法。研究发现,地表峰值加速度(PGA)和断层距离这两个因素对 Tg 值有显著影响。通过比较钻孔和地表运动的 Tg 值,我们发现与预期相反,在大多数情况下,钻孔运动的 Tg 通常大于地表运动的 Tg。最后,利用回归分析给出了井眼运动和地表运动 Tg 之间的换算公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristic period of response spectrum for surface and borehole ground motions
Determining the characteristic period of ground motions (Tg) is an essential step in the seismic design of structures, but a critical problem that needs to be solved is figuring out how to do so when bedrock ground motion is utilized as an input. In this paper, the relationship between surface and borehole temperature data is investigated, and the main factors affecting the Tg are analyzed. Then, the algorithm for predicting Tg is presented. It is found that two factors, i.e., peak ground acceleration (PGA) and fault distance have significant effects on the value of Tg. By comparing the values of Tg for borehole and surface motions, we find that, contrary to expectation, Tg for borehole motions is usually larger than that for surface motions in most cases. Finally, the conversion equation between the Tg for borehole and surface motions is given using regression analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信