冲积淤泥砂在交通循环荷载作用下的塑性变形试验研究

Yukun Mao, Junsheng Yang, Yue Dai, Dingyi Wu, Bingxu Chen
{"title":"冲积淤泥砂在交通循环荷载作用下的塑性变形试验研究","authors":"Yukun Mao, Junsheng Yang, Yue Dai, Dingyi Wu, Bingxu Chen","doi":"10.21595/vp.2023.23748","DOIUrl":null,"url":null,"abstract":"With the development of highway construction, alluvial silt is gradually used as roadbed filler, but its dynamic characteristics are less studied. Based on the highway section from Luanzhou to Qingtuoying of G508, the plastic strain and dynamic stress-dynamic strain development law of alluvial silty sand under cyclic loading are analyzed by GDS dynamic triaxial test. The results show that under the action of a small range of dynamic stress amplitude, the soil sample is not destroyed, and the number of cycles is 1000 times, which is the critical point at which the axial total strain gradually tends to be stable. When the dynamic stress amplitude is 300 kPa, the total axial strain increases linearly, and the soil sample is destroyed. The cumulative plastic strain of the alluvial silt is the smallest when the optimum water content is 8.0 %, the confining pressure is 80 kPa, and the frequency is 1Hz.At this time, the cyclic load has a dense effect on the soil, and the soil structure does not fail. The dynamic stress-strain relationship of alluvial silty sand conforms to the R. L. Kondner hyperbolic model. The greater the confining pressure and the closer the moisture content to the optimal moisture content, the greater the dynamic strength. The research results are helpful to provide reference for other similar projects.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on plastic deformation of alluvial silty sand under traffic cyclic loading\",\"authors\":\"Yukun Mao, Junsheng Yang, Yue Dai, Dingyi Wu, Bingxu Chen\",\"doi\":\"10.21595/vp.2023.23748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of highway construction, alluvial silt is gradually used as roadbed filler, but its dynamic characteristics are less studied. Based on the highway section from Luanzhou to Qingtuoying of G508, the plastic strain and dynamic stress-dynamic strain development law of alluvial silty sand under cyclic loading are analyzed by GDS dynamic triaxial test. The results show that under the action of a small range of dynamic stress amplitude, the soil sample is not destroyed, and the number of cycles is 1000 times, which is the critical point at which the axial total strain gradually tends to be stable. When the dynamic stress amplitude is 300 kPa, the total axial strain increases linearly, and the soil sample is destroyed. The cumulative plastic strain of the alluvial silt is the smallest when the optimum water content is 8.0 %, the confining pressure is 80 kPa, and the frequency is 1Hz.At this time, the cyclic load has a dense effect on the soil, and the soil structure does not fail. The dynamic stress-strain relationship of alluvial silty sand conforms to the R. L. Kondner hyperbolic model. The greater the confining pressure and the closer the moisture content to the optimal moisture content, the greater the dynamic strength. The research results are helpful to provide reference for other similar projects.\",\"PeriodicalId\":262664,\"journal\":{\"name\":\"Vibroengineering PROCEDIA\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibroengineering PROCEDIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/vp.2023.23748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibroengineering PROCEDIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/vp.2023.23748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着公路建设的发展,冲积淤泥逐渐被用作路基填料,但对其动态特性的研究较少。本文以 G508 公路滦州至青土营路段为研究对象,通过 GDS 动三轴试验分析了冲积淤泥质砂在循环荷载作用下的塑性应变及动应力-动应变发展规律。结果表明,在小范围动应力幅作用下,土样不破坏,循环次数为1000次,是轴向总应变逐渐趋于稳定的临界点。当动应力幅值为 300 kPa 时,轴向总应变呈线性增长,土样破坏。当最佳含水量为 8.0 %、约束压力为 80 kPa、频率为 1Hz 时,冲积淤泥的累积塑性应变最小。冲积淤泥质砂的动应力-应变关系符合 R. L. Kondner 双曲线模型。约束压力越大,含水量越接近最佳含水量,动强度越大。研究成果有助于为其他类似项目提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on plastic deformation of alluvial silty sand under traffic cyclic loading
With the development of highway construction, alluvial silt is gradually used as roadbed filler, but its dynamic characteristics are less studied. Based on the highway section from Luanzhou to Qingtuoying of G508, the plastic strain and dynamic stress-dynamic strain development law of alluvial silty sand under cyclic loading are analyzed by GDS dynamic triaxial test. The results show that under the action of a small range of dynamic stress amplitude, the soil sample is not destroyed, and the number of cycles is 1000 times, which is the critical point at which the axial total strain gradually tends to be stable. When the dynamic stress amplitude is 300 kPa, the total axial strain increases linearly, and the soil sample is destroyed. The cumulative plastic strain of the alluvial silt is the smallest when the optimum water content is 8.0 %, the confining pressure is 80 kPa, and the frequency is 1Hz.At this time, the cyclic load has a dense effect on the soil, and the soil structure does not fail. The dynamic stress-strain relationship of alluvial silty sand conforms to the R. L. Kondner hyperbolic model. The greater the confining pressure and the closer the moisture content to the optimal moisture content, the greater the dynamic strength. The research results are helpful to provide reference for other similar projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信