分析非均质平行四边形板的振动模式

Sapna, Amit Sharma
{"title":"分析非均质平行四边形板的振动模式","authors":"Sapna, Amit Sharma","doi":"10.21595/vp.2023.23758","DOIUrl":null,"url":null,"abstract":"This study analyzes vibration modes in non-homogeneous orthotropic parallelogram plate with a one-dimensional circular thickness, focusing on SCCC edge condition, where C and S represent the clamped and simply supported edges of the plate, respectively. Circular Poisson’s ratio variation is considered, along with linear temperature changes. The study demonstrates the advantages of variable Poisson’s ratio over density parameter variation in obtaining shorter vibration time periods. Orthotropic parallelogram plate, thermal gradient, circular tapering, nonhomogeneity.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing vibration modes in non-homogeneous parallelogram plates\",\"authors\":\"Sapna, Amit Sharma\",\"doi\":\"10.21595/vp.2023.23758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study analyzes vibration modes in non-homogeneous orthotropic parallelogram plate with a one-dimensional circular thickness, focusing on SCCC edge condition, where C and S represent the clamped and simply supported edges of the plate, respectively. Circular Poisson’s ratio variation is considered, along with linear temperature changes. The study demonstrates the advantages of variable Poisson’s ratio over density parameter variation in obtaining shorter vibration time periods. Orthotropic parallelogram plate, thermal gradient, circular tapering, nonhomogeneity.\",\"PeriodicalId\":262664,\"journal\":{\"name\":\"Vibroengineering PROCEDIA\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibroengineering PROCEDIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/vp.2023.23758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibroengineering PROCEDIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/vp.2023.23758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究分析了厚度为一维圆形的非均质正交平行四边形板的振动模式,重点是 SCCC 边缘条件,其中 C 和 S 分别代表板的夹紧边缘和简支撑边缘。考虑了圆形泊松比变化以及线性温度变化。研究表明,在缩短振动时间段方面,泊松比变化比密度参数变化更具优势。各向同性平行四边形板、热梯度、圆锥形、非均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing vibration modes in non-homogeneous parallelogram plates
This study analyzes vibration modes in non-homogeneous orthotropic parallelogram plate with a one-dimensional circular thickness, focusing on SCCC edge condition, where C and S represent the clamped and simply supported edges of the plate, respectively. Circular Poisson’s ratio variation is considered, along with linear temperature changes. The study demonstrates the advantages of variable Poisson’s ratio over density parameter variation in obtaining shorter vibration time periods. Orthotropic parallelogram plate, thermal gradient, circular tapering, nonhomogeneity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信