准伪几何空间拓扑学和非对称规范空间上的连续线性算子

Klatenia Selawati, Christiana Rini Indrati
{"title":"准伪几何空间拓扑学和非对称规范空间上的连续线性算子","authors":"Klatenia Selawati, Christiana Rini Indrati","doi":"10.14710/jfma.v6i2.18504","DOIUrl":null,"url":null,"abstract":". In this paper, we will discuss about topological properties of quasi-pseudometric spaces and properties of linear operators in asymmetric normed spaces. The topological properties of quasi-pseudometric spaces will be given consisting of open and closed set properties in quasi-pseudometric spaces. The discussion about properties of linear operator on asymmetric normed spaces is focus on the uniform boundedness principle. The uniform boundedness theorem is proved by utilizing completeness properties and characteristic of closed sets on quasi-pseudometric spaces.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"357 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TOPOLOGY OF QUASI-PSEUDOMETRIC SPACES AND CONTINUOUS LINEAR OPERATOR ON ASYMMETRIC NORMED SPACES\",\"authors\":\"Klatenia Selawati, Christiana Rini Indrati\",\"doi\":\"10.14710/jfma.v6i2.18504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we will discuss about topological properties of quasi-pseudometric spaces and properties of linear operators in asymmetric normed spaces. The topological properties of quasi-pseudometric spaces will be given consisting of open and closed set properties in quasi-pseudometric spaces. The discussion about properties of linear operator on asymmetric normed spaces is focus on the uniform boundedness principle. The uniform boundedness theorem is proved by utilizing completeness properties and characteristic of closed sets on quasi-pseudometric spaces.\",\"PeriodicalId\":359074,\"journal\":{\"name\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"volume\":\"357 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jfma.v6i2.18504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v6i2.18504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.本文将讨论准假计量空间的拓扑性质和非对称规范空间中线性算子的性质。本文将给出准假几何空间的拓扑性质,包括准假几何空间的开集和闭集性质。关于非对称规范空间中线性算子性质的讨论主要集中在均匀有界性原理上。均匀有界性定理是利用准假计量空间上闭集的完备性和特征来证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TOPOLOGY OF QUASI-PSEUDOMETRIC SPACES AND CONTINUOUS LINEAR OPERATOR ON ASYMMETRIC NORMED SPACES
. In this paper, we will discuss about topological properties of quasi-pseudometric spaces and properties of linear operators in asymmetric normed spaces. The topological properties of quasi-pseudometric spaces will be given consisting of open and closed set properties in quasi-pseudometric spaces. The discussion about properties of linear operator on asymmetric normed spaces is focus on the uniform boundedness principle. The uniform boundedness theorem is proved by utilizing completeness properties and characteristic of closed sets on quasi-pseudometric spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信