{"title":"基于峰值地面加速度的同震断层位移估算方法","authors":"Qingyun Zhou, Ruxin Zhuang","doi":"10.21595/vp.2023.23732","DOIUrl":null,"url":null,"abstract":"Based on the results of the seismic hazard survey in Yunnan Province, four exceedance probabilities of peak ground acceleration were converted into earthquake magnitudes using the empirical relationship between epicentral intensity and magnitude. By using logistic regression, earthquake magnitude, source depth, cover layer thickness, and fault type were used as independent variables to calculate the probability of co-seismic displacement for different earthquake magnitudes. Using the magnitude-displacement empirical model in the southwestern region of China, horizontal and vertical displacements were obtained with a 95 % confidence level. The results show that all Holocene faults have the ability to produce surface displacement, but from the perspective of probabilistic hazard, the probability of surface rupture in the short term is low, while the probability of surface rupture for each fault significantly increases over a long time scale. Buildings with different service lives should adopt different avoidance strategies, and buildings with shorter service lives (<50a) can consider not avoiding active faults.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method of co-seismic fault displacement estimate based on peak ground acceleration\",\"authors\":\"Qingyun Zhou, Ruxin Zhuang\",\"doi\":\"10.21595/vp.2023.23732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the results of the seismic hazard survey in Yunnan Province, four exceedance probabilities of peak ground acceleration were converted into earthquake magnitudes using the empirical relationship between epicentral intensity and magnitude. By using logistic regression, earthquake magnitude, source depth, cover layer thickness, and fault type were used as independent variables to calculate the probability of co-seismic displacement for different earthquake magnitudes. Using the magnitude-displacement empirical model in the southwestern region of China, horizontal and vertical displacements were obtained with a 95 % confidence level. The results show that all Holocene faults have the ability to produce surface displacement, but from the perspective of probabilistic hazard, the probability of surface rupture in the short term is low, while the probability of surface rupture for each fault significantly increases over a long time scale. Buildings with different service lives should adopt different avoidance strategies, and buildings with shorter service lives (<50a) can consider not avoiding active faults.\",\"PeriodicalId\":262664,\"journal\":{\"name\":\"Vibroengineering PROCEDIA\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibroengineering PROCEDIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/vp.2023.23732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibroengineering PROCEDIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/vp.2023.23732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Method of co-seismic fault displacement estimate based on peak ground acceleration
Based on the results of the seismic hazard survey in Yunnan Province, four exceedance probabilities of peak ground acceleration were converted into earthquake magnitudes using the empirical relationship between epicentral intensity and magnitude. By using logistic regression, earthquake magnitude, source depth, cover layer thickness, and fault type were used as independent variables to calculate the probability of co-seismic displacement for different earthquake magnitudes. Using the magnitude-displacement empirical model in the southwestern region of China, horizontal and vertical displacements were obtained with a 95 % confidence level. The results show that all Holocene faults have the ability to produce surface displacement, but from the perspective of probabilistic hazard, the probability of surface rupture in the short term is low, while the probability of surface rupture for each fault significantly increases over a long time scale. Buildings with different service lives should adopt different avoidance strategies, and buildings with shorter service lives (<50a) can consider not avoiding active faults.