{"title":"用于偏远地区电气化的混合可再生能源系统的优化和技术经济分析","authors":"Ameer Faisal, N. Anwer","doi":"10.1177/0309524x231210266","DOIUrl":null,"url":null,"abstract":"The welfare of the villages is one of the primary objectives of the rural electrification programmes. Compared to electrifying urban regions, electrifying rural areas is more expensive. Energy requirements in rural areas can be met using hybrid energy technologies. This study proposes a cost-effective power solution to reduce the net present cost (NPC), cost of energy (COE), unmet loads and CO2 emissions. Grey Wolf Optimizer (GWO) and Homer Pro are used to optimize the size of the components of the system. The combination of solar, wind and biogas with a battery storage system is cost-effective with zero unmet loads. Of the three combinations considered, the values of COE and NPC for combination-1 were 0.156 ($/kWh) and $2.05 M respectively. The comparative analysis of optimization between the GWO technique and Homer Pro carried out shows that the value of COE and NPC are reduced by 5.45% and 3.30% respectively.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"20 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and techno-economic analysis of hybrid renewable energy systems for the electrification of remote areas\",\"authors\":\"Ameer Faisal, N. Anwer\",\"doi\":\"10.1177/0309524x231210266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The welfare of the villages is one of the primary objectives of the rural electrification programmes. Compared to electrifying urban regions, electrifying rural areas is more expensive. Energy requirements in rural areas can be met using hybrid energy technologies. This study proposes a cost-effective power solution to reduce the net present cost (NPC), cost of energy (COE), unmet loads and CO2 emissions. Grey Wolf Optimizer (GWO) and Homer Pro are used to optimize the size of the components of the system. The combination of solar, wind and biogas with a battery storage system is cost-effective with zero unmet loads. Of the three combinations considered, the values of COE and NPC for combination-1 were 0.156 ($/kWh) and $2.05 M respectively. The comparative analysis of optimization between the GWO technique and Homer Pro carried out shows that the value of COE and NPC are reduced by 5.45% and 3.30% respectively.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524x231210266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x231210266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
农村的福利是农村电气化计划的主要目标之一。与城市地区的电气化相比,农村地区的电气化成本更高。使用混合能源技术可以满足农村地区的能源需求。本研究提出了一种具有成本效益的电力解决方案,以降低净现值成本 (NPC)、能源成本 (COE)、未满足的负荷和二氧化碳排放量。灰狼优化器(GWO)和 Homer Pro 用于优化系统组件的大小。太阳能、风能和沼气与蓄电池储能系统的组合具有成本效益,未满足的负荷为零。在考虑的三种组合中,组合-1 的 COE 值和 NPC 值分别为 0.156(美元/千瓦时)和 205 万美元。GWO 技术与 Homer Pro 的优化对比分析表明,COE 和 NPC 值分别降低了 5.45% 和 3.30%。
Optimization and techno-economic analysis of hybrid renewable energy systems for the electrification of remote areas
The welfare of the villages is one of the primary objectives of the rural electrification programmes. Compared to electrifying urban regions, electrifying rural areas is more expensive. Energy requirements in rural areas can be met using hybrid energy technologies. This study proposes a cost-effective power solution to reduce the net present cost (NPC), cost of energy (COE), unmet loads and CO2 emissions. Grey Wolf Optimizer (GWO) and Homer Pro are used to optimize the size of the components of the system. The combination of solar, wind and biogas with a battery storage system is cost-effective with zero unmet loads. Of the three combinations considered, the values of COE and NPC for combination-1 were 0.156 ($/kWh) and $2.05 M respectively. The comparative analysis of optimization between the GWO technique and Homer Pro carried out shows that the value of COE and NPC are reduced by 5.45% and 3.30% respectively.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.