Nadarajan Prathap, Nagarajan Dravid, Srinivasan R. Kaarmukhilnilavan, M. Shivakumar, S. Venkatesan, M. Shaik, Baji Shaik
{"title":"阿里靛蓝合成的纳米氧化铜及其生物应用","authors":"Nadarajan Prathap, Nagarajan Dravid, Srinivasan R. Kaarmukhilnilavan, M. Shivakumar, S. Venkatesan, M. Shaik, Baji Shaik","doi":"10.3390/inorganics11120462","DOIUrl":null,"url":null,"abstract":"The leaf extract of Indigofera linnaei Ali, an Indian medicinal plant, was utilized in the synthesis of copper oxide nanoparticles (CuO-NPs). Green chemistry is a safe and cost-effective method for the synthesis of nanoparticles using plant extracts. The synthesis of CuO NPs was confirmed using ultraviolet–visible (UV-visible) spectrum λ-max data with two peaks at 269 and 337 nm. Different functional groups were identified using Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction (XRD) was used to confirm the crystalline structure of the CuO-nanoparticles. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyses were performed to examine the surface morphology and elemental composition of the biosynthesized CuO-NPs. Furthermore, the synthesized CuO-NPs exhibited antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis. Additionally, they exhibited a good insecticidal effect on Culex quinquefasciatus larvae, with low LC50 55.716 µg/mL and LC90 123.657 µg/mL values. The CuO-NPs inhibited human breast cancer cells in a concentration-dependent manner, with an IC50 value of 63.13 µg/mL.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":"127 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper Oxide Nanoparticles Synthesized from Indigofera linnaei Ali and This Plant’s Biological Applications\",\"authors\":\"Nadarajan Prathap, Nagarajan Dravid, Srinivasan R. Kaarmukhilnilavan, M. Shivakumar, S. Venkatesan, M. Shaik, Baji Shaik\",\"doi\":\"10.3390/inorganics11120462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The leaf extract of Indigofera linnaei Ali, an Indian medicinal plant, was utilized in the synthesis of copper oxide nanoparticles (CuO-NPs). Green chemistry is a safe and cost-effective method for the synthesis of nanoparticles using plant extracts. The synthesis of CuO NPs was confirmed using ultraviolet–visible (UV-visible) spectrum λ-max data with two peaks at 269 and 337 nm. Different functional groups were identified using Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction (XRD) was used to confirm the crystalline structure of the CuO-nanoparticles. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyses were performed to examine the surface morphology and elemental composition of the biosynthesized CuO-NPs. Furthermore, the synthesized CuO-NPs exhibited antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis. Additionally, they exhibited a good insecticidal effect on Culex quinquefasciatus larvae, with low LC50 55.716 µg/mL and LC90 123.657 µg/mL values. The CuO-NPs inhibited human breast cancer cells in a concentration-dependent manner, with an IC50 value of 63.13 µg/mL.\",\"PeriodicalId\":13572,\"journal\":{\"name\":\"Inorganics\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics11120462\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11120462","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Copper Oxide Nanoparticles Synthesized from Indigofera linnaei Ali and This Plant’s Biological Applications
The leaf extract of Indigofera linnaei Ali, an Indian medicinal plant, was utilized in the synthesis of copper oxide nanoparticles (CuO-NPs). Green chemistry is a safe and cost-effective method for the synthesis of nanoparticles using plant extracts. The synthesis of CuO NPs was confirmed using ultraviolet–visible (UV-visible) spectrum λ-max data with two peaks at 269 and 337 nm. Different functional groups were identified using Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction (XRD) was used to confirm the crystalline structure of the CuO-nanoparticles. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyses were performed to examine the surface morphology and elemental composition of the biosynthesized CuO-NPs. Furthermore, the synthesized CuO-NPs exhibited antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis. Additionally, they exhibited a good insecticidal effect on Culex quinquefasciatus larvae, with low LC50 55.716 µg/mL and LC90 123.657 µg/mL values. The CuO-NPs inhibited human breast cancer cells in a concentration-dependent manner, with an IC50 value of 63.13 µg/mL.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD