{"title":"论局部 C∗-代数上希尔伯特模块中的框架","authors":"Roumaissae El Jazzar, Rossafi Mohamed","doi":"10.28924/2291-8639-21-2023-130","DOIUrl":null,"url":null,"abstract":"Frame is a fundamental notion in the study of vector spaces; they offer redundancy and flexibility, which favor their application in various fields of mathematics. This article aims to collect important results of frames in Hibert pro-C∗-modules: Frame, ∗-frame, ∗-K-frame, g-frame, ∗-gframe, ∗-K-g-frame, operator frame, ∗-operator frame, ∗-K-operator frames. We also prove some new notions.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Frames in Hilbert Modules Over Locally C∗-Algebras\",\"authors\":\"Roumaissae El Jazzar, Rossafi Mohamed\",\"doi\":\"10.28924/2291-8639-21-2023-130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frame is a fundamental notion in the study of vector spaces; they offer redundancy and flexibility, which favor their application in various fields of mathematics. This article aims to collect important results of frames in Hibert pro-C∗-modules: Frame, ∗-frame, ∗-K-frame, g-frame, ∗-gframe, ∗-K-g-frame, operator frame, ∗-operator frame, ∗-K-operator frames. We also prove some new notions.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Frames in Hilbert Modules Over Locally C∗-Algebras
Frame is a fundamental notion in the study of vector spaces; they offer redundancy and flexibility, which favor their application in various fields of mathematics. This article aims to collect important results of frames in Hibert pro-C∗-modules: Frame, ∗-frame, ∗-K-frame, g-frame, ∗-gframe, ∗-K-g-frame, operator frame, ∗-operator frame, ∗-K-operator frames. We also prove some new notions.