量子数据库原型的概念化:一个完整的生态系统

IF 0.3
Sayantan Chakraborty
{"title":"量子数据库原型的概念化:一个完整的生态系统","authors":"Sayantan Chakraborty","doi":"10.47164/ijngc.v14i4.1121","DOIUrl":null,"url":null,"abstract":"This study proposes a conceptualization of a prototype And a possibility to converge classical database and fully quantum database. This study mostly identifies the gap between this classical and quantum database and proposes a prototype that can be implemented in future products. It is a way that can be used in future industrial product development on hybrid quantum computers. The existing concept used to consider oracle as a black box in this study opens up the possibility for the quantum industry to develop the QASAM module so that we can create a fully quantum database instead of using a classical database as BlackBox.As the Toffoli gate is basically an effective NAND gate it is possible to run any algorithm theoretically in quantum computers. So we will propose a logical design for memory management for the quantum database, security enhancement model, Quantum Recovery Manager & automatic storage management model, and more for the quantum database which will ensure the quantum advantages. In this study, we will also explain the Quantum Vector Database as well as the possibility of improvement in duality quantum computing. It opens up a new scope, possibilities, and research areas in a new approach for quantum databases and duality quantum computing.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"342 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Conceptualization Of A Prototype For Quantum Database: A Complete Ecosystem\",\"authors\":\"Sayantan Chakraborty\",\"doi\":\"10.47164/ijngc.v14i4.1121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a conceptualization of a prototype And a possibility to converge classical database and fully quantum database. This study mostly identifies the gap between this classical and quantum database and proposes a prototype that can be implemented in future products. It is a way that can be used in future industrial product development on hybrid quantum computers. The existing concept used to consider oracle as a black box in this study opens up the possibility for the quantum industry to develop the QASAM module so that we can create a fully quantum database instead of using a classical database as BlackBox.As the Toffoli gate is basically an effective NAND gate it is possible to run any algorithm theoretically in quantum computers. So we will propose a logical design for memory management for the quantum database, security enhancement model, Quantum Recovery Manager & automatic storage management model, and more for the quantum database which will ensure the quantum advantages. In this study, we will also explain the Quantum Vector Database as well as the possibility of improvement in duality quantum computing. It opens up a new scope, possibilities, and research areas in a new approach for quantum databases and duality quantum computing.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"342 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v14i4.1121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i4.1121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个原型的概念,以及融合经典数据库和全量子数据库的可能性。本研究主要确定了这种经典数据库和量子数据库之间的差距,并提出了一种可在未来产品中实现的原型。这是一种可用于未来混合量子计算机工业产品开发的方法。本研究中将甲骨文视为黑盒的现有概念为量子行业开发 QASAM 模块提供了可能性,这样我们就可以创建一个全量子数据库,而不是使用经典数据库作为黑盒。因此,我们将为量子数据库提出内存管理逻辑设计、安全增强模型、量子恢复管理器和自动存储管理模型等,以确保量子数据库的量子优势。在这项研究中,我们还将解释量子矢量数据库以及改进二元量子计算的可能性。它为量子数据库和二元量子计算的新方法开辟了新的范围、可能性和研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Conceptualization Of A Prototype For Quantum Database: A Complete Ecosystem
This study proposes a conceptualization of a prototype And a possibility to converge classical database and fully quantum database. This study mostly identifies the gap between this classical and quantum database and proposes a prototype that can be implemented in future products. It is a way that can be used in future industrial product development on hybrid quantum computers. The existing concept used to consider oracle as a black box in this study opens up the possibility for the quantum industry to develop the QASAM module so that we can create a fully quantum database instead of using a classical database as BlackBox.As the Toffoli gate is basically an effective NAND gate it is possible to run any algorithm theoretically in quantum computers. So we will propose a logical design for memory management for the quantum database, security enhancement model, Quantum Recovery Manager & automatic storage management model, and more for the quantum database which will ensure the quantum advantages. In this study, we will also explain the Quantum Vector Database as well as the possibility of improvement in duality quantum computing. It opens up a new scope, possibilities, and research areas in a new approach for quantum databases and duality quantum computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信