优化问题的坐标分解后裔法研究

IF 0.7 Q2 MATHEMATICS
Salahuddin
{"title":"优化问题的坐标分解后裔法研究","authors":"Salahuddin","doi":"10.28924/2291-8639-21-2023-129","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to consider a general non-stationary optimization problem whose objective function need not be smooth in general and only approximation sequences are known instead of exact values of the functions. We apply a two-step technique where approximate solutions of a sequence of a generalized mixed variational inequality problem (GMVIP) are inserted in the iterative method of a selective coordinate-wise decomposition descent method. Its convergence is achieved under coercivity-type assumptions.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"102 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Coordinate-Wise Decomposition Descent Method for Optimization Problems\",\"authors\":\"Salahuddin\",\"doi\":\"10.28924/2291-8639-21-2023-129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to consider a general non-stationary optimization problem whose objective function need not be smooth in general and only approximation sequences are known instead of exact values of the functions. We apply a two-step technique where approximate solutions of a sequence of a generalized mixed variational inequality problem (GMVIP) are inserted in the iterative method of a selective coordinate-wise decomposition descent method. Its convergence is achieved under coercivity-type assumptions.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在考虑一个一般非平稳优化问题,该问题的目标函数在一般情况下不一定是平稳的,而且只知道近似序列,而不知道函数的精确值。我们采用了一种两步技术,即在选择性坐标分解下降法的迭代法中插入广义混合变分不等式问题(GMVIP)序列的近似解。其收敛性是在矫顽力型假设条件下实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Study of Coordinate-Wise Decomposition Descent Method for Optimization Problems
The aim of this paper is to consider a general non-stationary optimization problem whose objective function need not be smooth in general and only approximation sequences are known instead of exact values of the functions. We apply a two-step technique where approximate solutions of a sequence of a generalized mixed variational inequality problem (GMVIP) are inserted in the iterative method of a selective coordinate-wise decomposition descent method. Its convergence is achieved under coercivity-type assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信