{"title":"优化问题的坐标分解后裔法研究","authors":"Salahuddin","doi":"10.28924/2291-8639-21-2023-129","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to consider a general non-stationary optimization problem whose objective function need not be smooth in general and only approximation sequences are known instead of exact values of the functions. We apply a two-step technique where approximate solutions of a sequence of a generalized mixed variational inequality problem (GMVIP) are inserted in the iterative method of a selective coordinate-wise decomposition descent method. Its convergence is achieved under coercivity-type assumptions.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"102 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Coordinate-Wise Decomposition Descent Method for Optimization Problems\",\"authors\":\"Salahuddin\",\"doi\":\"10.28924/2291-8639-21-2023-129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to consider a general non-stationary optimization problem whose objective function need not be smooth in general and only approximation sequences are known instead of exact values of the functions. We apply a two-step technique where approximate solutions of a sequence of a generalized mixed variational inequality problem (GMVIP) are inserted in the iterative method of a selective coordinate-wise decomposition descent method. Its convergence is achieved under coercivity-type assumptions.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Study of Coordinate-Wise Decomposition Descent Method for Optimization Problems
The aim of this paper is to consider a general non-stationary optimization problem whose objective function need not be smooth in general and only approximation sequences are known instead of exact values of the functions. We apply a two-step technique where approximate solutions of a sequence of a generalized mixed variational inequality problem (GMVIP) are inserted in the iterative method of a selective coordinate-wise decomposition descent method. Its convergence is achieved under coercivity-type assumptions.