衡量动态旅行推销员问题蚁群优化算法的性能

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2023-11-28 DOI:10.3390/a16120545
Michalis Mavrovouniotis, Maria N. Anastasiadou, D. Hadjimitsis
{"title":"衡量动态旅行推销员问题蚁群优化算法的性能","authors":"Michalis Mavrovouniotis, Maria N. Anastasiadou, D. Hadjimitsis","doi":"10.3390/a16120545","DOIUrl":null,"url":null,"abstract":"Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"69 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the Performance of Ant Colony Optimization Algorithms for the Dynamic Traveling Salesman Problem\",\"authors\":\"Michalis Mavrovouniotis, Maria N. Anastasiadou, D. Hadjimitsis\",\"doi\":\"10.3390/a16120545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases.\",\"PeriodicalId\":7636,\"journal\":{\"name\":\"Algorithms\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a16120545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16120545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

蚁群优化(ACO)已经证明了其在动态环境优化问题上的适应能力。在这项工作中,动态旅行推销员问题(DTSP)被用作生成动态测试案例的基础问题。DTSP 考虑了两种动态变化:(1) 节点变化和 (2) 权重变化。在实验中,ACO 算法在不同的 DTSP 测试用例中进行了系统比较。统计测试使用 ACO 算法的算术平均数和标准差进行,这是比较 ACO 算法的标准方法。为了补充比较,还使用了分布的定量值来衡量 ACO 算法的峰值、平均值和坏情况性能。实验结果表明,在一些 DTSP 测试案例中,使用量化值评估 ACO 算法的性能具有一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring the Performance of Ant Colony Optimization Algorithms for the Dynamic Traveling Salesman Problem
Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信