{"title":"恶劣工业环境中 LoRa 通信的性能评估","authors":"L. Aarif, Mohamed Tabaa, Hanaa Hachimi","doi":"10.3390/jsan12060080","DOIUrl":null,"url":null,"abstract":"LoRa technology is being integrated into industrial applications as part of Industry 4.0 owing to its longer range and low power consumption. However, noise, interference, and the fading effect all have a negative impact on LoRa performance in an industrial environment, necessitating solutions to ensure reliable communication. This paper evaluates and compares LoRa’s performance in terms of packet error rate (PER) with and without forward error correction (FEC) in an industrial environment. The impact of integrating an infinite impulse response (IIR) or finite impulse response (FIR) filter into the LoRa architecture is also evaluated. Simulations are carried out in MATLAB at 868 MHz with a bandwidth of 125 kHz and two spreading factors of 7 and 12. Many-to-one and one-to-many communication modes are considered, as are line of sight (LOS) and non-line of Sight (NLOS) conditions. Simulation results show that, compared to an environment with additive white Gaussian noise (AWGN), LoRa technology suffers a significant degradation of its PER performance in industrial environments. Nevertheless, the use of forward error correction (FEC) contributes positively to offsetting this decline. Depending on the configuration and architecture examined, the gain in signal-to-noise ratio (SNR) using a 4/8 coding ratio ranges from 7 dB to 11 dB. Integrating IIR or FIR filters also boosts performance, with additional SNR gains ranging from 2 dB to 6 dB, depending on the simulation parameters.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of LoRa Communications in Harsh Industrial Environments\",\"authors\":\"L. Aarif, Mohamed Tabaa, Hanaa Hachimi\",\"doi\":\"10.3390/jsan12060080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LoRa technology is being integrated into industrial applications as part of Industry 4.0 owing to its longer range and low power consumption. However, noise, interference, and the fading effect all have a negative impact on LoRa performance in an industrial environment, necessitating solutions to ensure reliable communication. This paper evaluates and compares LoRa’s performance in terms of packet error rate (PER) with and without forward error correction (FEC) in an industrial environment. The impact of integrating an infinite impulse response (IIR) or finite impulse response (FIR) filter into the LoRa architecture is also evaluated. Simulations are carried out in MATLAB at 868 MHz with a bandwidth of 125 kHz and two spreading factors of 7 and 12. Many-to-one and one-to-many communication modes are considered, as are line of sight (LOS) and non-line of Sight (NLOS) conditions. Simulation results show that, compared to an environment with additive white Gaussian noise (AWGN), LoRa technology suffers a significant degradation of its PER performance in industrial environments. Nevertheless, the use of forward error correction (FEC) contributes positively to offsetting this decline. Depending on the configuration and architecture examined, the gain in signal-to-noise ratio (SNR) using a 4/8 coding ratio ranges from 7 dB to 11 dB. Integrating IIR or FIR filters also boosts performance, with additional SNR gains ranging from 2 dB to 6 dB, depending on the simulation parameters.\",\"PeriodicalId\":37584,\"journal\":{\"name\":\"Journal of Sensor and Actuator Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensor and Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan12060080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12060080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
作为工业 4.0 的一部分,LoRa 技术因其较远的传输距离和较低的功耗而被集成到工业应用中。然而,噪声、干扰和衰减效应都会对 LoRa 在工业环境中的性能产生负面影响,因此需要解决方案来确保通信的可靠性。本文评估并比较了 LoRa 在工业环境中使用和不使用前向纠错(FEC)时的数据包错误率(PER)性能。此外,还评估了在 LoRa 架构中集成无限脉冲响应(IIR)或有限脉冲响应(FIR)滤波器的影响。仿真在 MATLAB 中进行,频率为 868 MHz,带宽为 125 kHz,两个扩展因子分别为 7 和 12。考虑了多对一和一对多通信模式,以及视线(LOS)和非视线(NLOS)条件。仿真结果表明,与加性白高斯噪声(AWGN)环境相比,LoRa 技术在工业环境中的 PER 性能明显下降。不过,使用前向纠错(FEC)可积极抵消这种下降。根据所研究的配置和架构,使用 4/8 编码比的信噪比 (SNR) 增益范围在 7 dB 到 11 dB 之间。集成 IIR 或 FIR 滤波器也能提高性能,额外的信噪比增益从 2 dB 到 6 dB 不等,具体取决于模拟参数。
Performance Evaluation of LoRa Communications in Harsh Industrial Environments
LoRa technology is being integrated into industrial applications as part of Industry 4.0 owing to its longer range and low power consumption. However, noise, interference, and the fading effect all have a negative impact on LoRa performance in an industrial environment, necessitating solutions to ensure reliable communication. This paper evaluates and compares LoRa’s performance in terms of packet error rate (PER) with and without forward error correction (FEC) in an industrial environment. The impact of integrating an infinite impulse response (IIR) or finite impulse response (FIR) filter into the LoRa architecture is also evaluated. Simulations are carried out in MATLAB at 868 MHz with a bandwidth of 125 kHz and two spreading factors of 7 and 12. Many-to-one and one-to-many communication modes are considered, as are line of sight (LOS) and non-line of Sight (NLOS) conditions. Simulation results show that, compared to an environment with additive white Gaussian noise (AWGN), LoRa technology suffers a significant degradation of its PER performance in industrial environments. Nevertheless, the use of forward error correction (FEC) contributes positively to offsetting this decline. Depending on the configuration and architecture examined, the gain in signal-to-noise ratio (SNR) using a 4/8 coding ratio ranges from 7 dB to 11 dB. Integrating IIR or FIR filters also boosts performance, with additional SNR gains ranging from 2 dB to 6 dB, depending on the simulation parameters.
期刊介绍:
Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.