使用 Adaboost 算法、KNN 和 SVM 基础分类器对移动设备中的恶意软件入侵进行动态分析

S.B. Oyong, U.O. Ekong, O.U. Obot
{"title":"使用 Adaboost 算法、KNN 和 SVM 基础分类器对移动设备中的恶意软件入侵进行动态分析","authors":"S.B. Oyong, U.O. Ekong, O.U. Obot","doi":"10.4314/wojast.v15i1.78","DOIUrl":null,"url":null,"abstract":"Cyber security is becoming more worrisome; malware is spreading by the day through proliferation and distribution of variants of known family signatures using obfuscation techniques. Mobile devices components such as central processing unit, memory, battery life, executable files and operating systems are constantly being attacked and  rendered unusable. Attack agents are specifically evading detection, damaging mobile devices’ executive files, stealing information, surcharging users for SMS sent and received without their knowledge or permission, and freezing applications for a ransom among others. This research work is keying into the fight against malware intrusion by designing and developing an intrusion detection system (IDS) using ensemble learning, boosting. Adaboost algorithm trains base classifiers (KNN and SVM) using network security laboratory-knowledge discovery in databases (NSL-KDD) dataset to build a more formidable classifier that will detect malware intrusion in mobile devices using cloud technology. The result obtained in this combination technique is 91.4% accurate with a bias (standard deviation) as low as 2.7%.","PeriodicalId":353187,"journal":{"name":"World Journal of Applied Science & Technology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic analysis of malwarae intrusion in mobile devices using Adaboost Algorithm, KNN and SVM base classifiers\",\"authors\":\"S.B. Oyong, U.O. Ekong, O.U. Obot\",\"doi\":\"10.4314/wojast.v15i1.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber security is becoming more worrisome; malware is spreading by the day through proliferation and distribution of variants of known family signatures using obfuscation techniques. Mobile devices components such as central processing unit, memory, battery life, executable files and operating systems are constantly being attacked and  rendered unusable. Attack agents are specifically evading detection, damaging mobile devices’ executive files, stealing information, surcharging users for SMS sent and received without their knowledge or permission, and freezing applications for a ransom among others. This research work is keying into the fight against malware intrusion by designing and developing an intrusion detection system (IDS) using ensemble learning, boosting. Adaboost algorithm trains base classifiers (KNN and SVM) using network security laboratory-knowledge discovery in databases (NSL-KDD) dataset to build a more formidable classifier that will detect malware intrusion in mobile devices using cloud technology. The result obtained in this combination technique is 91.4% accurate with a bias (standard deviation) as low as 2.7%.\",\"PeriodicalId\":353187,\"journal\":{\"name\":\"World Journal of Applied Science & Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Applied Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/wojast.v15i1.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Applied Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/wojast.v15i1.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络安全正变得越来越令人担忧;通过使用混淆技术扩散和传播已知家族特征的变种,恶意软件正在日益蔓延。中央处理器、内存、电池寿命、可执行文件和操作系统等移动设备组件不断受到攻击,导致无法使用。攻击代理专门躲避检测、破坏移动设备的执行文件、窃取信息、在用户不知情或未经其许可的情况下对其收发的短信收取附加费,以及冻结应用程序以索取赎金等。这项研究工作的关键在于利用集合学习(ensemble learning)和增强算法(boosting)设计和开发入侵检测系统(IDS),从而打击恶意软件入侵。Adaboost 算法使用网络安全实验室-数据库知识发现(NSL-KDD)数据集训练基础分类器(KNN 和 SVM),以建立一个更强大的分类器,利用云技术检测移动设备中的恶意软件入侵。这种组合技术的结果准确率为 91.4%,偏差(标准偏差)低至 2.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic analysis of malwarae intrusion in mobile devices using Adaboost Algorithm, KNN and SVM base classifiers
Cyber security is becoming more worrisome; malware is spreading by the day through proliferation and distribution of variants of known family signatures using obfuscation techniques. Mobile devices components such as central processing unit, memory, battery life, executable files and operating systems are constantly being attacked and  rendered unusable. Attack agents are specifically evading detection, damaging mobile devices’ executive files, stealing information, surcharging users for SMS sent and received without their knowledge or permission, and freezing applications for a ransom among others. This research work is keying into the fight against malware intrusion by designing and developing an intrusion detection system (IDS) using ensemble learning, boosting. Adaboost algorithm trains base classifiers (KNN and SVM) using network security laboratory-knowledge discovery in databases (NSL-KDD) dataset to build a more formidable classifier that will detect malware intrusion in mobile devices using cloud technology. The result obtained in this combination technique is 91.4% accurate with a bias (standard deviation) as low as 2.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信