Filip Vrbanić, M. Gregurić, Mladen Miletić, E. Ivanjko
{"title":"基于强化学习的动态区域位置,用于具有拥堵检测功能的混合交通流变速限速控制","authors":"Filip Vrbanić, M. Gregurić, Mladen Miletić, E. Ivanjko","doi":"10.3390/machines11121058","DOIUrl":null,"url":null,"abstract":"Existing transportation infrastructure and traffic control systems face increasing strain as a result of rising demand, resulting in frequent congestion. Expanding infrastructure is not a feasible solution for enhancing the capacity of the road. Hence, Intelligent Transportation Systems are often employed to enhance the Level of Service (LoS). One such approach is Variable Speed Limit (VSL) control. VSL increases the LoS and safety on motorways by optimizing the speed limit according to the traffic conditions. The proliferation of Connected and Autonomous Vehicles (CAVs) presents fresh prospects for improving the operation and measurement of traffic states for the operation of the VSL control system. This paper introduces a method for the detection of multiple congested areas that is used for state estimation for a dynamically positioned VSL control system for urban motorways. The method utilizes Q-Learning (QL) and CAVs as mobile sensors and actuators. The proposed control approach, named Congestion Detection QL Dynamic Position VSL (CD-QL-DPVSL), dynamically detects all of the congested areas and applies two sets of actions, involving the dynamic positioning of speed limit zones and imposed speed limits for all detected congested areas simultaneously. The proposed CD-QL-DPVSL control approach underwent an evaluation across six distinct traffic scenarios, encompassing CAV penetration rates spanning from 10% to 100% and demonstrated a significantly better performance compared to other control approaches, including no control, rule-based VSL, two Speed-Transition-Matrices-based QL-VSL configurations with fixed speed limit zone positions, and a Speed-Transition-Matrices-based QL-DVSL with a dynamic speed limit zone position. It achieved enhancements in macroscopic traffic parameters such as the Mean Travel Time and Total Time Spent by adapting its control policy to every simulated scenario.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"35 Suppl. 1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning-Based Dynamic Zone Positions for Mixed Traffic Flow Variable Speed Limit Control with Congestion Detection\",\"authors\":\"Filip Vrbanić, M. Gregurić, Mladen Miletić, E. Ivanjko\",\"doi\":\"10.3390/machines11121058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing transportation infrastructure and traffic control systems face increasing strain as a result of rising demand, resulting in frequent congestion. Expanding infrastructure is not a feasible solution for enhancing the capacity of the road. Hence, Intelligent Transportation Systems are often employed to enhance the Level of Service (LoS). One such approach is Variable Speed Limit (VSL) control. VSL increases the LoS and safety on motorways by optimizing the speed limit according to the traffic conditions. The proliferation of Connected and Autonomous Vehicles (CAVs) presents fresh prospects for improving the operation and measurement of traffic states for the operation of the VSL control system. This paper introduces a method for the detection of multiple congested areas that is used for state estimation for a dynamically positioned VSL control system for urban motorways. The method utilizes Q-Learning (QL) and CAVs as mobile sensors and actuators. The proposed control approach, named Congestion Detection QL Dynamic Position VSL (CD-QL-DPVSL), dynamically detects all of the congested areas and applies two sets of actions, involving the dynamic positioning of speed limit zones and imposed speed limits for all detected congested areas simultaneously. The proposed CD-QL-DPVSL control approach underwent an evaluation across six distinct traffic scenarios, encompassing CAV penetration rates spanning from 10% to 100% and demonstrated a significantly better performance compared to other control approaches, including no control, rule-based VSL, two Speed-Transition-Matrices-based QL-VSL configurations with fixed speed limit zone positions, and a Speed-Transition-Matrices-based QL-DVSL with a dynamic speed limit zone position. It achieved enhancements in macroscopic traffic parameters such as the Mean Travel Time and Total Time Spent by adapting its control policy to every simulated scenario.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"35 Suppl. 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11121058\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121058","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Reinforcement Learning-Based Dynamic Zone Positions for Mixed Traffic Flow Variable Speed Limit Control with Congestion Detection
Existing transportation infrastructure and traffic control systems face increasing strain as a result of rising demand, resulting in frequent congestion. Expanding infrastructure is not a feasible solution for enhancing the capacity of the road. Hence, Intelligent Transportation Systems are often employed to enhance the Level of Service (LoS). One such approach is Variable Speed Limit (VSL) control. VSL increases the LoS and safety on motorways by optimizing the speed limit according to the traffic conditions. The proliferation of Connected and Autonomous Vehicles (CAVs) presents fresh prospects for improving the operation and measurement of traffic states for the operation of the VSL control system. This paper introduces a method for the detection of multiple congested areas that is used for state estimation for a dynamically positioned VSL control system for urban motorways. The method utilizes Q-Learning (QL) and CAVs as mobile sensors and actuators. The proposed control approach, named Congestion Detection QL Dynamic Position VSL (CD-QL-DPVSL), dynamically detects all of the congested areas and applies two sets of actions, involving the dynamic positioning of speed limit zones and imposed speed limits for all detected congested areas simultaneously. The proposed CD-QL-DPVSL control approach underwent an evaluation across six distinct traffic scenarios, encompassing CAV penetration rates spanning from 10% to 100% and demonstrated a significantly better performance compared to other control approaches, including no control, rule-based VSL, two Speed-Transition-Matrices-based QL-VSL configurations with fixed speed limit zone positions, and a Speed-Transition-Matrices-based QL-DVSL with a dynamic speed limit zone position. It achieved enhancements in macroscopic traffic parameters such as the Mean Travel Time and Total Time Spent by adapting its control policy to every simulated scenario.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.