加速度量空间离群点检测的预截止值计算方法

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Honglong Xu, Zhonghao Liang, Kaide Huang, Guoshun Huang, Yan He
{"title":"加速度量空间离群点检测的预截止值计算方法","authors":"Honglong Xu, Zhonghao Liang, Kaide Huang, Guoshun Huang, Yan He","doi":"10.4018/ijghpc.334125","DOIUrl":null,"url":null,"abstract":"Outlier detection is an important data mining technique. In this article, the triangle inequality of distances is leveraged to design a pre-cutoff value (PCV) algorithm that calculates the outlier degree pre-threshold without additional distance computations. This algorithm is suitable for accelerating various metric space outlier detection algorithms. Experimental results on multiple real datasets demonstrate that the PCV algorithm reduces the runtime and number of distance computations for the iORCA algorithm by 14.59% and 15.73%, respectively. Even compared to the new high-performance algorithm ADPOD, the PCV algorithm achieves 1.41% and 0.45% reductions. Notably, the non-outlier exclusion for the first data block in the dataset is significantly improved, with an exclusion rate of up to 36.5%, leading to a 23.54% reduction in detection time for that data block. While demonstrating excellent results, the PCV algorithm maintains the data type generality of metric space algorithms.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier Detection\",\"authors\":\"Honglong Xu, Zhonghao Liang, Kaide Huang, Guoshun Huang, Yan He\",\"doi\":\"10.4018/ijghpc.334125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier detection is an important data mining technique. In this article, the triangle inequality of distances is leveraged to design a pre-cutoff value (PCV) algorithm that calculates the outlier degree pre-threshold without additional distance computations. This algorithm is suitable for accelerating various metric space outlier detection algorithms. Experimental results on multiple real datasets demonstrate that the PCV algorithm reduces the runtime and number of distance computations for the iORCA algorithm by 14.59% and 15.73%, respectively. Even compared to the new high-performance algorithm ADPOD, the PCV algorithm achieves 1.41% and 0.45% reductions. Notably, the non-outlier exclusion for the first data block in the dataset is significantly improved, with an exclusion rate of up to 36.5%, leading to a 23.54% reduction in detection time for that data block. While demonstrating excellent results, the PCV algorithm maintains the data type generality of metric space algorithms.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijghpc.334125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.334125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

离群点检测是一项重要的数据挖掘技术。本文利用距离的三角形不等式设计了一种预截断值(PCV)算法,无需额外的距离计算即可计算离群值的预阈值。该算法适用于加速各种度量空间离群点检测算法。在多个真实数据集上的实验结果表明,PCV 算法将 iORCA 算法的运行时间和距离计算次数分别减少了 14.59% 和 15.73%。即使与新的高性能算法 ADPOD 相比,PCV 算法也分别减少了 1.41% 和 0.45%。值得注意的是,数据集中第一个数据块的非异常值排除能力得到了显著提高,排除率高达 36.5%,从而使该数据块的检测时间缩短了 23.54%。PCV 算法在展示出色结果的同时,还保持了度量空间算法的数据类型通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier Detection
Outlier detection is an important data mining technique. In this article, the triangle inequality of distances is leveraged to design a pre-cutoff value (PCV) algorithm that calculates the outlier degree pre-threshold without additional distance computations. This algorithm is suitable for accelerating various metric space outlier detection algorithms. Experimental results on multiple real datasets demonstrate that the PCV algorithm reduces the runtime and number of distance computations for the iORCA algorithm by 14.59% and 15.73%, respectively. Even compared to the new high-performance algorithm ADPOD, the PCV algorithm achieves 1.41% and 0.45% reductions. Notably, the non-outlier exclusion for the first data block in the dataset is significantly improved, with an exclusion rate of up to 36.5%, leading to a 23.54% reduction in detection time for that data block. While demonstrating excellent results, the PCV algorithm maintains the data type generality of metric space algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信