Kelsey C. Britt, P. Skinner, P. Heinselman, C. Potvin, Montgomery Flora, B. Matilla, K. Knopfmeier, Anthony E. Reinhart
{"title":"验证预报预警系统(WoFS)预测的准线性对流系统","authors":"Kelsey C. Britt, P. Skinner, P. Heinselman, C. Potvin, Montgomery Flora, B. Matilla, K. Knopfmeier, Anthony E. Reinhart","doi":"10.1175/waf-d-23-0106.1","DOIUrl":null,"url":null,"abstract":"Quasi-linear convective systems (QLCSs) can produce multiple hazards (e.g., straight-line winds, flash flooding, and mesovortex tornadoes) that pose a significant threat to life and property, and are often difficult to accurately forecast. The NSSL Warn-on-Forecast System (WoFS) is a convection-allowing ensemble system developed to provide short-term, probabilistic forecasting guidance for severe convective events. Examination of WoFS’s capability to predict QLCSs has yet to be systematically assessed across a large number of cases for 0–6-hr forecast times. In this study, the quality of WoFS QLCS forecasts for 50 QLCS days occurring between 2017–2020 is evaluated using object-based verification techniques. First, a storm mode identification and classification algorithm is tuned to identify high-reflectivity, linear convective structures. The algorithm is used to identify convective line objects in WoFS forecasts and Multi-Radar Multi-Sensor system (MRMS) gridded observations. WoFS QLCS objects are matched with MRMS observed objects to generate bulk verification statistics. Results suggest WoFS’s QLCS forecasts are skillful with the 3- and 6-hr forecasts having similar probability of detection and false alarm ratio values near 0.59 and 0.34, respectively. The WoFS objects are larger, more intense, and less eccentric than those in MRMS. A novel centerline analysis is performed to evaluate orientation, length, and tortuosity (i.e., curvature) differences, and spatial displacements between observed and predicted convective lines. While no systematic propagation biases are found, WoFS typically has centerlines that are more tortuous and displaced to the northwest of MRMS centerlines, suggesting WoFS may be overforecasting the intensity of the QLCS’s rear-inflow jet and northern bookend vortex.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"75 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of Quasi-Linear Convective Systems Predicted by the Warn-on-Forecast System (WoFS)\",\"authors\":\"Kelsey C. Britt, P. Skinner, P. Heinselman, C. Potvin, Montgomery Flora, B. Matilla, K. Knopfmeier, Anthony E. Reinhart\",\"doi\":\"10.1175/waf-d-23-0106.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-linear convective systems (QLCSs) can produce multiple hazards (e.g., straight-line winds, flash flooding, and mesovortex tornadoes) that pose a significant threat to life and property, and are often difficult to accurately forecast. The NSSL Warn-on-Forecast System (WoFS) is a convection-allowing ensemble system developed to provide short-term, probabilistic forecasting guidance for severe convective events. Examination of WoFS’s capability to predict QLCSs has yet to be systematically assessed across a large number of cases for 0–6-hr forecast times. In this study, the quality of WoFS QLCS forecasts for 50 QLCS days occurring between 2017–2020 is evaluated using object-based verification techniques. First, a storm mode identification and classification algorithm is tuned to identify high-reflectivity, linear convective structures. The algorithm is used to identify convective line objects in WoFS forecasts and Multi-Radar Multi-Sensor system (MRMS) gridded observations. WoFS QLCS objects are matched with MRMS observed objects to generate bulk verification statistics. Results suggest WoFS’s QLCS forecasts are skillful with the 3- and 6-hr forecasts having similar probability of detection and false alarm ratio values near 0.59 and 0.34, respectively. The WoFS objects are larger, more intense, and less eccentric than those in MRMS. A novel centerline analysis is performed to evaluate orientation, length, and tortuosity (i.e., curvature) differences, and spatial displacements between observed and predicted convective lines. While no systematic propagation biases are found, WoFS typically has centerlines that are more tortuous and displaced to the northwest of MRMS centerlines, suggesting WoFS may be overforecasting the intensity of the QLCS’s rear-inflow jet and northern bookend vortex.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-23-0106.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0106.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Verification of Quasi-Linear Convective Systems Predicted by the Warn-on-Forecast System (WoFS)
Quasi-linear convective systems (QLCSs) can produce multiple hazards (e.g., straight-line winds, flash flooding, and mesovortex tornadoes) that pose a significant threat to life and property, and are often difficult to accurately forecast. The NSSL Warn-on-Forecast System (WoFS) is a convection-allowing ensemble system developed to provide short-term, probabilistic forecasting guidance for severe convective events. Examination of WoFS’s capability to predict QLCSs has yet to be systematically assessed across a large number of cases for 0–6-hr forecast times. In this study, the quality of WoFS QLCS forecasts for 50 QLCS days occurring between 2017–2020 is evaluated using object-based verification techniques. First, a storm mode identification and classification algorithm is tuned to identify high-reflectivity, linear convective structures. The algorithm is used to identify convective line objects in WoFS forecasts and Multi-Radar Multi-Sensor system (MRMS) gridded observations. WoFS QLCS objects are matched with MRMS observed objects to generate bulk verification statistics. Results suggest WoFS’s QLCS forecasts are skillful with the 3- and 6-hr forecasts having similar probability of detection and false alarm ratio values near 0.59 and 0.34, respectively. The WoFS objects are larger, more intense, and less eccentric than those in MRMS. A novel centerline analysis is performed to evaluate orientation, length, and tortuosity (i.e., curvature) differences, and spatial displacements between observed and predicted convective lines. While no systematic propagation biases are found, WoFS typically has centerlines that are more tortuous and displaced to the northwest of MRMS centerlines, suggesting WoFS may be overforecasting the intensity of the QLCS’s rear-inflow jet and northern bookend vortex.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.