实现可持续的马匹福利:预测马匹存活率的机器学习技术比较分析

Mahmoud Ismail
{"title":"实现可持续的马匹福利:预测马匹存活率的机器学习技术比较分析","authors":"Mahmoud Ismail","doi":"10.61185/smij.2023.55105","DOIUrl":null,"url":null,"abstract":"Promoting sustainable equine welfare is pivotal in ensuring the well-being of horses, particularly concerning their survival based on past medical conditions. This study presents a comprehensive comparative analysis of various machine learning techniques employed to predict the survival prospects of horses using historical medical data. By leveraging a dataset encompassing diverse medical attributes and survival outcomes, this research assesses the efficacy and comparative performance of distinct machine learning algorithms. The study delves into the application of supervised learning models, including but not limited to decision trees, random forests, support vector machines, and neural networks, in predicting equine survival. Evaluative metrics such as accuracy, precision, recall, and F1 score are employed to assess the predictive capabilities and generalizability of each model. Moreover, this research emphasizes the importance of sustainable equine welfare within the broader context of responsible animal care.","PeriodicalId":148129,"journal":{"name":"Sustainable Machine Intelligence Journal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Sustainable Equine Welfare: Comparative Analysis of Machine Learning Techniques in Predicting Horse Survival\",\"authors\":\"Mahmoud Ismail\",\"doi\":\"10.61185/smij.2023.55105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Promoting sustainable equine welfare is pivotal in ensuring the well-being of horses, particularly concerning their survival based on past medical conditions. This study presents a comprehensive comparative analysis of various machine learning techniques employed to predict the survival prospects of horses using historical medical data. By leveraging a dataset encompassing diverse medical attributes and survival outcomes, this research assesses the efficacy and comparative performance of distinct machine learning algorithms. The study delves into the application of supervised learning models, including but not limited to decision trees, random forests, support vector machines, and neural networks, in predicting equine survival. Evaluative metrics such as accuracy, precision, recall, and F1 score are employed to assess the predictive capabilities and generalizability of each model. Moreover, this research emphasizes the importance of sustainable equine welfare within the broader context of responsible animal care.\",\"PeriodicalId\":148129,\"journal\":{\"name\":\"Sustainable Machine Intelligence Journal\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Machine Intelligence Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61185/smij.2023.55105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Machine Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61185/smij.2023.55105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

促进可持续的马匹福利是确保马匹福祉的关键所在,尤其是根据马匹过去的医疗状况预测其存活率。本研究对利用历史医疗数据预测马匹生存前景的各种机器学习技术进行了全面的比较分析。通过利用包含不同医疗属性和生存结果的数据集,本研究评估了不同机器学习算法的功效和比较性能。研究深入探讨了监督学习模型在预测马匹存活率中的应用,包括但不限于决策树、随机森林、支持向量机和神经网络。采用准确率、精确度、召回率和 F1 分数等评价指标来评估每个模型的预测能力和可推广性。此外,这项研究还强调了可持续马匹福利在更广泛的负责任动物护理背景下的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Sustainable Equine Welfare: Comparative Analysis of Machine Learning Techniques in Predicting Horse Survival
Promoting sustainable equine welfare is pivotal in ensuring the well-being of horses, particularly concerning their survival based on past medical conditions. This study presents a comprehensive comparative analysis of various machine learning techniques employed to predict the survival prospects of horses using historical medical data. By leveraging a dataset encompassing diverse medical attributes and survival outcomes, this research assesses the efficacy and comparative performance of distinct machine learning algorithms. The study delves into the application of supervised learning models, including but not limited to decision trees, random forests, support vector machines, and neural networks, in predicting equine survival. Evaluative metrics such as accuracy, precision, recall, and F1 score are employed to assess the predictive capabilities and generalizability of each model. Moreover, this research emphasizes the importance of sustainable equine welfare within the broader context of responsible animal care.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信