粉末混合微放电加工诱导钛合金表面改性以获得抗菌性能

IF 3.3 Q2 ENGINEERING, MANUFACTURING
Nurlan Nauryz, Salikh Omarov, Ainur Kenessova, Tri T. Pham, D. Talamona, Asma Perveen
{"title":"粉末混合微放电加工诱导钛合金表面改性以获得抗菌性能","authors":"Nurlan Nauryz, Salikh Omarov, Ainur Kenessova, Tri T. Pham, D. Talamona, Asma Perveen","doi":"10.3390/jmmp7060214","DOIUrl":null,"url":null,"abstract":"The powder-mixed electro-discharge machining (PM-EDM) technique has shown its advantages in forming surfaces and depositing elements on the machined surface. Moreover, using hydroxyapatite (HA) powder in PM-EDM enhances the biocompatibility of the implant’s surfaces. Ti-6Al-4V alloy has tremendous advantages in biocompatibility over other metallic biomaterials in bone replacement surgeries. However, the increasing demand for orthopedical implants is leading to a more significant number of implant surgeries, increasing the number of patients with failed implants. A significant portion of implant failures are due to bacterial inflammation. Despite that, there is a lack of current research investigating the antibacterial properties of Ti-6Al-4V alloys. This paper focuses on studying the performance of HA PMEDM on Ti-6Al-4V alloy and its effects on antibacterial properties. By changing the capacitance (1 nF, 10 nF and 100 nF), gap voltage (90 V, 100 V and 110 V) and HA powder concentration (0 g/L, 5 g/L and 10 g/L), machining performance metrics such as material removal rate (MRR), overcut, crater size and hardness were examined through the HA PM micro-EDM (PM-μ-EDM) technique. Furthermore, the surface roughness, contact angle, and antibacterial properties of HA PM micro-wire EDM (PM-μ-WEDM)-treated surfaces were evaluated. The antibacterial tests were conducted for Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis bacteria. The key results showed a correlation between the discharge energy and powder concentration with the antibacterial properties of the modified surfaces. The modified surfaces exhibited reduced biofilm formation under low discharge energy and a 0 g/L powder concentration, resulting in a 0.273 μm roughness. This pattern persisted with high discharge energy and a 10 g/L powder concentration, where the roughness measured 1.832 μm. Therefore, it is possible to optimize the antibacterial properties of the surface through its roughness.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"20 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powder-Mixed Micro-Electro-Discharge Machining-Induced Surface Modification of Titanium Alloy for Antibacterial Properties\",\"authors\":\"Nurlan Nauryz, Salikh Omarov, Ainur Kenessova, Tri T. Pham, D. Talamona, Asma Perveen\",\"doi\":\"10.3390/jmmp7060214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The powder-mixed electro-discharge machining (PM-EDM) technique has shown its advantages in forming surfaces and depositing elements on the machined surface. Moreover, using hydroxyapatite (HA) powder in PM-EDM enhances the biocompatibility of the implant’s surfaces. Ti-6Al-4V alloy has tremendous advantages in biocompatibility over other metallic biomaterials in bone replacement surgeries. However, the increasing demand for orthopedical implants is leading to a more significant number of implant surgeries, increasing the number of patients with failed implants. A significant portion of implant failures are due to bacterial inflammation. Despite that, there is a lack of current research investigating the antibacterial properties of Ti-6Al-4V alloys. This paper focuses on studying the performance of HA PMEDM on Ti-6Al-4V alloy and its effects on antibacterial properties. By changing the capacitance (1 nF, 10 nF and 100 nF), gap voltage (90 V, 100 V and 110 V) and HA powder concentration (0 g/L, 5 g/L and 10 g/L), machining performance metrics such as material removal rate (MRR), overcut, crater size and hardness were examined through the HA PM micro-EDM (PM-μ-EDM) technique. Furthermore, the surface roughness, contact angle, and antibacterial properties of HA PM micro-wire EDM (PM-μ-WEDM)-treated surfaces were evaluated. The antibacterial tests were conducted for Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis bacteria. The key results showed a correlation between the discharge energy and powder concentration with the antibacterial properties of the modified surfaces. The modified surfaces exhibited reduced biofilm formation under low discharge energy and a 0 g/L powder concentration, resulting in a 0.273 μm roughness. This pattern persisted with high discharge energy and a 10 g/L powder concentration, where the roughness measured 1.832 μm. Therefore, it is possible to optimize the antibacterial properties of the surface through its roughness.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp7060214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7060214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

混合粉末放电加工(PM-EDM)技术在形成表面和在加工表面沉积元素方面显示出其优势。此外,在 PM-EDM 中使用羟基磷灰石(HA)粉末还能增强植入体表面的生物相容性。在骨替代手术中,与其他金属生物材料相比,Ti-6Al-4V 合金在生物相容性方面具有巨大优势。然而,随着骨科植入物需求的不断增长,植入物手术的数量也随之增加,导致植入物失败的患者人数也随之增加。植入失败的很大一部分原因是细菌发炎。尽管如此,目前还缺乏对 Ti-6Al-4V 合金抗菌性能的研究。本文重点研究了 Ti-6Al-4V 合金上的 HA PMEDM 性能及其对抗菌性能的影响。通过改变电容(1 nF、10 nF 和 100 nF)、间隙电压(90 V、100 V 和 110 V)和 HA 粉末浓度(0 g/L、5 g/L 和 10 g/L),采用 HA PM 微型电火花 (PM-μ-EDM) 技术检测了材料去除率 (MRR)、过切、凹坑尺寸和硬度等加工性能指标。此外,还评估了经 HA PM 微线电火花加工(PM-μ-WEDM)处理的表面粗糙度、接触角和抗菌特性。对金黄色葡萄球菌、绿脓杆菌、大肠杆菌和枯草杆菌进行了抗菌测试。主要结果表明,放电能量和粉末浓度与改性表面的抗菌性能之间存在相关性。在低放电能量和 0 克/升粉末浓度条件下,改性表面的粗糙度为 0.273 μm,生物膜形成减少。在高放电能量和 10 克/升粉末浓度条件下,这种模式依然存在,粗糙度达到 1.832 μm。因此,可以通过表面粗糙度来优化表面的抗菌性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Powder-Mixed Micro-Electro-Discharge Machining-Induced Surface Modification of Titanium Alloy for Antibacterial Properties
The powder-mixed electro-discharge machining (PM-EDM) technique has shown its advantages in forming surfaces and depositing elements on the machined surface. Moreover, using hydroxyapatite (HA) powder in PM-EDM enhances the biocompatibility of the implant’s surfaces. Ti-6Al-4V alloy has tremendous advantages in biocompatibility over other metallic biomaterials in bone replacement surgeries. However, the increasing demand for orthopedical implants is leading to a more significant number of implant surgeries, increasing the number of patients with failed implants. A significant portion of implant failures are due to bacterial inflammation. Despite that, there is a lack of current research investigating the antibacterial properties of Ti-6Al-4V alloys. This paper focuses on studying the performance of HA PMEDM on Ti-6Al-4V alloy and its effects on antibacterial properties. By changing the capacitance (1 nF, 10 nF and 100 nF), gap voltage (90 V, 100 V and 110 V) and HA powder concentration (0 g/L, 5 g/L and 10 g/L), machining performance metrics such as material removal rate (MRR), overcut, crater size and hardness were examined through the HA PM micro-EDM (PM-μ-EDM) technique. Furthermore, the surface roughness, contact angle, and antibacterial properties of HA PM micro-wire EDM (PM-μ-WEDM)-treated surfaces were evaluated. The antibacterial tests were conducted for Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis bacteria. The key results showed a correlation between the discharge energy and powder concentration with the antibacterial properties of the modified surfaces. The modified surfaces exhibited reduced biofilm formation under low discharge energy and a 0 g/L powder concentration, resulting in a 0.273 μm roughness. This pattern persisted with high discharge energy and a 10 g/L powder concentration, where the roughness measured 1.832 μm. Therefore, it is possible to optimize the antibacterial properties of the surface through its roughness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信