应用 Smote-ncl 克服冠心病分类中的等级失衡问题

M. Dewi, Trinado Hamonangan Saragih, Rudy Herteno, R. Nugroho, D. T. Nugrahadi
{"title":"应用 Smote-ncl 克服冠心病分类中的等级失衡问题","authors":"M. Dewi, Trinado Hamonangan Saragih, Rudy Herteno, R. Nugroho, D. T. Nugrahadi","doi":"10.33795/jip.v10i1.1394","DOIUrl":null,"url":null,"abstract":"Penyakit jantung koroner (PJK) terjadi akibat penyumbatan atau penyempitan pada pembuluh darah jantung karena adanya endapan lemak dan kolesterol sehingga mengakibatkan suplai darah ke jantung menjadi terganggu. PJK masih merupakan masalah kesehatan yang penting dan berdampak secara sosioekonomi karena biaya obat-obatan yang cukup mahal dan lamanya waktu perawatan serta pengobatannya. Upaya pencegahan melalui deteksi dini dan upaya pengendaliannya sangat penting untuk dilakukan. Salah satu cara untuk mendeteksi penyakit jantung koroner dengan memanfaatkan teknologi komputasi, yaitu melakukan klasifikasi menggunakan algoritma tertentu. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta penanganan ketidakseimbangan data menggunakan SMOTE dan SMOTE-NCL. Data yang digunakan dalam penelitian ini adalah data Coronary Heart Disease yang memiliki dua buah kelas, yaitu kelas 0 (negatif PJK) dan kelas 1 (positif PJK) dengan permasalahan data yang tidak seimbang. Penelitian ini dilakukan dengan membandingkan kinerja dari klasifikasi SVM tanpa dilakukan penyeimbangan data, klasifikasi SVM dengan penyeimbangan data SMOTE, dan kalsifikasi SVM dengan penyeimbangan data SMOTE-NCL. Hasil yang didapatkan dari penelitian ini adalah pada klasifikasi SVM dengan penyeimbangan data SMOTE-NCL menghasilkan kinerja terbaik jika dibandingkan dengan model klasifikasi lain dengan nilai akurasi sebesar 85,10%.","PeriodicalId":232501,"journal":{"name":"Jurnal Informatika Polinema","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN SMOTE-NCL UNTUK MENGATASI KETIDAKSEIMBANGAN KELAS PADA KLASIFIKASI PENYAKIT JANTUNG KORONER\",\"authors\":\"M. Dewi, Trinado Hamonangan Saragih, Rudy Herteno, R. Nugroho, D. T. Nugrahadi\",\"doi\":\"10.33795/jip.v10i1.1394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penyakit jantung koroner (PJK) terjadi akibat penyumbatan atau penyempitan pada pembuluh darah jantung karena adanya endapan lemak dan kolesterol sehingga mengakibatkan suplai darah ke jantung menjadi terganggu. PJK masih merupakan masalah kesehatan yang penting dan berdampak secara sosioekonomi karena biaya obat-obatan yang cukup mahal dan lamanya waktu perawatan serta pengobatannya. Upaya pencegahan melalui deteksi dini dan upaya pengendaliannya sangat penting untuk dilakukan. Salah satu cara untuk mendeteksi penyakit jantung koroner dengan memanfaatkan teknologi komputasi, yaitu melakukan klasifikasi menggunakan algoritma tertentu. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta penanganan ketidakseimbangan data menggunakan SMOTE dan SMOTE-NCL. Data yang digunakan dalam penelitian ini adalah data Coronary Heart Disease yang memiliki dua buah kelas, yaitu kelas 0 (negatif PJK) dan kelas 1 (positif PJK) dengan permasalahan data yang tidak seimbang. Penelitian ini dilakukan dengan membandingkan kinerja dari klasifikasi SVM tanpa dilakukan penyeimbangan data, klasifikasi SVM dengan penyeimbangan data SMOTE, dan kalsifikasi SVM dengan penyeimbangan data SMOTE-NCL. Hasil yang didapatkan dari penelitian ini adalah pada klasifikasi SVM dengan penyeimbangan data SMOTE-NCL menghasilkan kinerja terbaik jika dibandingkan dengan model klasifikasi lain dengan nilai akurasi sebesar 85,10%.\",\"PeriodicalId\":232501,\"journal\":{\"name\":\"Jurnal Informatika Polinema\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika Polinema\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33795/jip.v10i1.1394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Polinema","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33795/jip.v10i1.1394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冠心病(CHD)是由于脂肪和胆固醇沉积导致心脏血管阻塞或狭窄,从而导致心脏供血中断。冠心病仍然是一个重要的健康问题,并且由于药物费用高昂、护理和治疗时间漫长而对社会经济产生影响。通过早期检测和控制来进行预防工作非常重要。检测冠心病的方法之一是利用计算技术,即使用某些算法进行分类。本研究使用支持向量机(SVM)算法进行分类,并使用 SMOTE 和 SMOTE-NCL 处理数据不平衡问题。本研究使用的数据是冠心病数据,该数据有两类,即 0 类(阴性冠心病)和 1 类(阳性冠心病),存在数据不平衡问题。本研究通过比较无数据平衡的 SVM 分类、有 SMOTE 数据平衡的 SVM 分类和有 SMOTE-NCL 数据平衡的 SVM 分类的性能来进行。研究结果表明,与其他分类模型相比,采用 SMOTE-NCL 数据平衡的 SVM 分类性能最佳,准确率达到 85.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENERAPAN SMOTE-NCL UNTUK MENGATASI KETIDAKSEIMBANGAN KELAS PADA KLASIFIKASI PENYAKIT JANTUNG KORONER
Penyakit jantung koroner (PJK) terjadi akibat penyumbatan atau penyempitan pada pembuluh darah jantung karena adanya endapan lemak dan kolesterol sehingga mengakibatkan suplai darah ke jantung menjadi terganggu. PJK masih merupakan masalah kesehatan yang penting dan berdampak secara sosioekonomi karena biaya obat-obatan yang cukup mahal dan lamanya waktu perawatan serta pengobatannya. Upaya pencegahan melalui deteksi dini dan upaya pengendaliannya sangat penting untuk dilakukan. Salah satu cara untuk mendeteksi penyakit jantung koroner dengan memanfaatkan teknologi komputasi, yaitu melakukan klasifikasi menggunakan algoritma tertentu. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta penanganan ketidakseimbangan data menggunakan SMOTE dan SMOTE-NCL. Data yang digunakan dalam penelitian ini adalah data Coronary Heart Disease yang memiliki dua buah kelas, yaitu kelas 0 (negatif PJK) dan kelas 1 (positif PJK) dengan permasalahan data yang tidak seimbang. Penelitian ini dilakukan dengan membandingkan kinerja dari klasifikasi SVM tanpa dilakukan penyeimbangan data, klasifikasi SVM dengan penyeimbangan data SMOTE, dan kalsifikasi SVM dengan penyeimbangan data SMOTE-NCL. Hasil yang didapatkan dari penelitian ini adalah pada klasifikasi SVM dengan penyeimbangan data SMOTE-NCL menghasilkan kinerja terbaik jika dibandingkan dengan model klasifikasi lain dengan nilai akurasi sebesar 85,10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信