在 Transkribus 中训练神经网络以识别多语种、多作者手稿集中的文本的实验

IF 2 0 HUMANITIES, MULTIDISCIPLINARY
Heritage Pub Date : 2023-11-29 DOI:10.3390/heritage6120392
Carlotta Capurro, Vera Provatorova, E. Kanoulas
{"title":"在 Transkribus 中训练神经网络以识别多语种、多作者手稿集中的文本的实验","authors":"Carlotta Capurro, Vera Provatorova, E. Kanoulas","doi":"10.3390/heritage6120392","DOIUrl":null,"url":null,"abstract":"This work aims at developing an optimal strategy to automatically transcribe a large quantity of uncategorised, digitised archival documents when resources include handwritten text by multiple authors and in several languages. We present a comparative study to establish the efficiency of a single multilingual handwritten text recognition (HTR) model trained on multiple handwriting styles instead of using a separate model for every language. When successful, this approach allows us to automate the transcription of the archive, reducing manual annotation efforts and facilitating information retrieval. To train the model, we used the material from the personal archive of the Dutch glass artist Sybren Valkema (1916–1996), processing it with Transkribus.","PeriodicalId":12934,"journal":{"name":"Heritage","volume":"304 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimenting with Training a Neural Network in Transkribus to Recognise Text in a Multilingual and Multi-Authored Manuscript Collection\",\"authors\":\"Carlotta Capurro, Vera Provatorova, E. Kanoulas\",\"doi\":\"10.3390/heritage6120392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims at developing an optimal strategy to automatically transcribe a large quantity of uncategorised, digitised archival documents when resources include handwritten text by multiple authors and in several languages. We present a comparative study to establish the efficiency of a single multilingual handwritten text recognition (HTR) model trained on multiple handwriting styles instead of using a separate model for every language. When successful, this approach allows us to automate the transcription of the archive, reducing manual annotation efforts and facilitating information retrieval. To train the model, we used the material from the personal archive of the Dutch glass artist Sybren Valkema (1916–1996), processing it with Transkribus.\",\"PeriodicalId\":12934,\"journal\":{\"name\":\"Heritage\",\"volume\":\"304 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heritage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/heritage6120392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"HUMANITIES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/heritage6120392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作旨在开发一种最佳策略,以便在资源包括多个作者和多种语言的手写文本时,自动转录大量未分类的数字化档案文件。我们进行了一项比较研究,以确定在多种手写风格上训练的单一多语言手写文本识别(HTR)模型的效率,而不是为每种语言使用一个单独的模型。如果成功,这种方法将使我们能够自动转录档案,减少人工标注工作并促进信息检索。为了训练模型,我们使用了荷兰玻璃艺术家 Sybren Valkema(1916-1996 年)的个人档案材料,并用 Transkribus 进行了处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimenting with Training a Neural Network in Transkribus to Recognise Text in a Multilingual and Multi-Authored Manuscript Collection
This work aims at developing an optimal strategy to automatically transcribe a large quantity of uncategorised, digitised archival documents when resources include handwritten text by multiple authors and in several languages. We present a comparative study to establish the efficiency of a single multilingual handwritten text recognition (HTR) model trained on multiple handwriting styles instead of using a separate model for every language. When successful, this approach allows us to automate the transcription of the archive, reducing manual annotation efforts and facilitating information retrieval. To train the model, we used the material from the personal archive of the Dutch glass artist Sybren Valkema (1916–1996), processing it with Transkribus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heritage
Heritage Multiple-
CiteScore
2.90
自引率
17.60%
发文量
165
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信