{"title":"反转涡轮机转子中流量和损耗方面的比较","authors":"Subbarao Rayapati","doi":"10.1139/tcsme-2023-0100","DOIUrl":null,"url":null,"abstract":"Counter Rotating Turbine (CRT) is considered as an alternative way of obtaining more work without the use of another guide vane in a multi-stage turbine. In such a scenario, present study discusses about the flow transmission that takes place in rotors, which are rotating in the reverse direction to each other. CRT stage with nozzle and rotors is modeled using ICEMCFD 14.5. Total pressure is specified at the inlet of turbine stage and flow rate is specified at the second rotor outlet. Contours of total pressure and turbulence kinetic energy provide the flow pattern in terms of steadiness, wake formation, incidence, flow circulation and flow turbulence. Velocity vectors and streamlines offer clarity about flow separation, vortex formation and wake detection. Deviation of flow characteristics from inlet to outlet of CRT stage are also presented. For further understanding of the flow, transverse planes at difference locations of the rotors are taken. Entropy and secondary velocity vectors are used to identify the loss aspect at each section of the rotors. From the blade-to-blade contours, the effect of absence of second guide vane is clear. Clearly, flow through rotor 1 is advantageous and flow through rotor 2 is chaotic.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":"13 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Flow and Loss Aspects in the Rotors of a Counter Rotating Turbine\",\"authors\":\"Subbarao Rayapati\",\"doi\":\"10.1139/tcsme-2023-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counter Rotating Turbine (CRT) is considered as an alternative way of obtaining more work without the use of another guide vane in a multi-stage turbine. In such a scenario, present study discusses about the flow transmission that takes place in rotors, which are rotating in the reverse direction to each other. CRT stage with nozzle and rotors is modeled using ICEMCFD 14.5. Total pressure is specified at the inlet of turbine stage and flow rate is specified at the second rotor outlet. Contours of total pressure and turbulence kinetic energy provide the flow pattern in terms of steadiness, wake formation, incidence, flow circulation and flow turbulence. Velocity vectors and streamlines offer clarity about flow separation, vortex formation and wake detection. Deviation of flow characteristics from inlet to outlet of CRT stage are also presented. For further understanding of the flow, transverse planes at difference locations of the rotors are taken. Entropy and secondary velocity vectors are used to identify the loss aspect at each section of the rotors. From the blade-to-blade contours, the effect of absence of second guide vane is clear. Clearly, flow through rotor 1 is advantageous and flow through rotor 2 is chaotic.\",\"PeriodicalId\":23285,\"journal\":{\"name\":\"Transactions of The Canadian Society for Mechanical Engineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Canadian Society for Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1139/tcsme-2023-0100\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Canadian Society for Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/tcsme-2023-0100","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Comparison of Flow and Loss Aspects in the Rotors of a Counter Rotating Turbine
Counter Rotating Turbine (CRT) is considered as an alternative way of obtaining more work without the use of another guide vane in a multi-stage turbine. In such a scenario, present study discusses about the flow transmission that takes place in rotors, which are rotating in the reverse direction to each other. CRT stage with nozzle and rotors is modeled using ICEMCFD 14.5. Total pressure is specified at the inlet of turbine stage and flow rate is specified at the second rotor outlet. Contours of total pressure and turbulence kinetic energy provide the flow pattern in terms of steadiness, wake formation, incidence, flow circulation and flow turbulence. Velocity vectors and streamlines offer clarity about flow separation, vortex formation and wake detection. Deviation of flow characteristics from inlet to outlet of CRT stage are also presented. For further understanding of the flow, transverse planes at difference locations of the rotors are taken. Entropy and secondary velocity vectors are used to identify the loss aspect at each section of the rotors. From the blade-to-blade contours, the effect of absence of second guide vane is clear. Clearly, flow through rotor 1 is advantageous and flow through rotor 2 is chaotic.
期刊介绍:
Published since 1972, Transactions of the Canadian Society for Mechanical Engineering is a quarterly journal that publishes comprehensive research articles and notes in the broad field of mechanical engineering. New advances in energy systems, biomechanics, engineering analysis and design, environmental engineering, materials technology, advanced manufacturing, mechatronics, MEMS, nanotechnology, thermo-fluids engineering, and transportation systems are featured.