Sarunya Sutam, K. Inyawilert, M. Punginsang, M. Siriwalai, A. Wisitsoraat, A. Tuantranont, C. Liewhiran
{"title":"基于电解剥离石墨烯/火焰制造的 WO3 复合薄膜的高选择性二氧化氮传感器","authors":"Sarunya Sutam, K. Inyawilert, M. Punginsang, M. Siriwalai, A. Wisitsoraat, A. Tuantranont, C. Liewhiran","doi":"10.12982/cmjs.2023.067","DOIUrl":null,"url":null,"abstract":"Gas sensors based on flame-synthesized WO3 nanoparticles loaded with 0.2-5 wt% electrochemically exfoliated graphene were evaluated for NO2 detection at ppb levels. The characterizations by X-Ray diffraction, nitrogen adsorption, electron microscopy and Raman spectrometry verified that multi-layer graphene sheets were well dispersed within spheroidal WO3 nanoparticles. Sensing layers fabricated with different graphene loading levels were tested towards 50-5000 ppb NO2 with varying operating temperatures from 100 to 350 °C in dry air. From the test results, the graphene-loaded WO3 nanoparticles with the optimal graphene content of 2 wt% exhibited the highest sensor response of ~ 5061 to 5000 ppb NO2 at the optimum working temperature of 150 °C. Furthermore, the sensor based on graphene/WO3 composites displayed high NO2 selectivity against various environmental gases and volatile organic compounds at 150 °C. The mechanistic roles of graphene on NO2 gas-sensing performances were described based on reactive ohmic M-S heterointerfaces. Therefore, the combination of electrochemically exfoliated graphene and flame-made WO3 nanoparticles could be an attractive mean to achieve highly sensitive and selective NO2 sensors.","PeriodicalId":9884,"journal":{"name":"Chiang Mai Journal of Science","volume":"23 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Selective NO2 Sensors Based on Electrolytically Exfoliated Graphene/Flame-made WO3 Composite Films\",\"authors\":\"Sarunya Sutam, K. Inyawilert, M. Punginsang, M. Siriwalai, A. Wisitsoraat, A. Tuantranont, C. Liewhiran\",\"doi\":\"10.12982/cmjs.2023.067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas sensors based on flame-synthesized WO3 nanoparticles loaded with 0.2-5 wt% electrochemically exfoliated graphene were evaluated for NO2 detection at ppb levels. The characterizations by X-Ray diffraction, nitrogen adsorption, electron microscopy and Raman spectrometry verified that multi-layer graphene sheets were well dispersed within spheroidal WO3 nanoparticles. Sensing layers fabricated with different graphene loading levels were tested towards 50-5000 ppb NO2 with varying operating temperatures from 100 to 350 °C in dry air. From the test results, the graphene-loaded WO3 nanoparticles with the optimal graphene content of 2 wt% exhibited the highest sensor response of ~ 5061 to 5000 ppb NO2 at the optimum working temperature of 150 °C. Furthermore, the sensor based on graphene/WO3 composites displayed high NO2 selectivity against various environmental gases and volatile organic compounds at 150 °C. The mechanistic roles of graphene on NO2 gas-sensing performances were described based on reactive ohmic M-S heterointerfaces. Therefore, the combination of electrochemically exfoliated graphene and flame-made WO3 nanoparticles could be an attractive mean to achieve highly sensitive and selective NO2 sensors.\",\"PeriodicalId\":9884,\"journal\":{\"name\":\"Chiang Mai Journal of Science\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chiang Mai Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.12982/cmjs.2023.067\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chiang Mai Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.12982/cmjs.2023.067","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Highly Selective NO2 Sensors Based on Electrolytically Exfoliated Graphene/Flame-made WO3 Composite Films
Gas sensors based on flame-synthesized WO3 nanoparticles loaded with 0.2-5 wt% electrochemically exfoliated graphene were evaluated for NO2 detection at ppb levels. The characterizations by X-Ray diffraction, nitrogen adsorption, electron microscopy and Raman spectrometry verified that multi-layer graphene sheets were well dispersed within spheroidal WO3 nanoparticles. Sensing layers fabricated with different graphene loading levels were tested towards 50-5000 ppb NO2 with varying operating temperatures from 100 to 350 °C in dry air. From the test results, the graphene-loaded WO3 nanoparticles with the optimal graphene content of 2 wt% exhibited the highest sensor response of ~ 5061 to 5000 ppb NO2 at the optimum working temperature of 150 °C. Furthermore, the sensor based on graphene/WO3 composites displayed high NO2 selectivity against various environmental gases and volatile organic compounds at 150 °C. The mechanistic roles of graphene on NO2 gas-sensing performances were described based on reactive ohmic M-S heterointerfaces. Therefore, the combination of electrochemically exfoliated graphene and flame-made WO3 nanoparticles could be an attractive mean to achieve highly sensitive and selective NO2 sensors.
期刊介绍:
The Chiang Mai Journal of Science is an international English language peer-reviewed journal which is published in open access electronic format 6 times a year in January, March, May, July, September and November by the Faculty of Science, Chiang Mai University. Manuscripts in most areas of science are welcomed except in areas such as agriculture, engineering and medical science which are outside the scope of the Journal. Currently, we focus on manuscripts in biology, chemistry, physics, materials science and environmental science. Papers in mathematics statistics and computer science are also included but should be of an applied nature rather than purely theoretical. Manuscripts describing experiments on humans or animals are required to provide proof that all experiments have been carried out according to the ethical regulations of the respective institutional and/or governmental authorities and this should be clearly stated in the manuscript itself. The Editor reserves the right to reject manuscripts that fail to do so.