{"title":"通过机械研磨获得的超细粉末对铝氧化物和锆氧化物陶瓷材料密度的影响","authors":"P. M. Pletnev, E. S. Semantsova","doi":"10.17073/1683-4518-2023-8-28-33","DOIUrl":null,"url":null,"abstract":"The results of grinding powdered, solid zirconium and aluminum oxides in various grinding units: ball, planetary and bead mills are presented. The grinding materials were: partially yttrium-stabilized zirconium dioxide of the PSZ-5,5Y brand (USA) and alumina with an alpha phase content of more than 99,0 wt. % of the brand Almatis CT 3000 GS (Germany). It is shown that in order to obtain high-purity, ultrafine oxide powders, it is advisable to use bead mills with zirconium dioxide grinding balls with dimensions of 0,6‒0,8 mm, with a ratio of M : W, as 1 : 4 and a specific grinding energy of 0,6‒0,8 kW. Achieving the ultrafine state of the initial oxide powders activates their solid-phase sintering, increases the density of ceramic materials: for aluminum oxide from 3,50‒3,78 g/cm3, for zirconium oxide from 5,40‒5,89 g/cm3.","PeriodicalId":19463,"journal":{"name":"NOVYE OGNEUPORY (NEW REFRACTORIES)","volume":" 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ultrafine powders obtained by mechanical grinding on the density of ceramic material made of aluminum and zirconium oxides\",\"authors\":\"P. M. Pletnev, E. S. Semantsova\",\"doi\":\"10.17073/1683-4518-2023-8-28-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of grinding powdered, solid zirconium and aluminum oxides in various grinding units: ball, planetary and bead mills are presented. The grinding materials were: partially yttrium-stabilized zirconium dioxide of the PSZ-5,5Y brand (USA) and alumina with an alpha phase content of more than 99,0 wt. % of the brand Almatis CT 3000 GS (Germany). It is shown that in order to obtain high-purity, ultrafine oxide powders, it is advisable to use bead mills with zirconium dioxide grinding balls with dimensions of 0,6‒0,8 mm, with a ratio of M : W, as 1 : 4 and a specific grinding energy of 0,6‒0,8 kW. Achieving the ultrafine state of the initial oxide powders activates their solid-phase sintering, increases the density of ceramic materials: for aluminum oxide from 3,50‒3,78 g/cm3, for zirconium oxide from 5,40‒5,89 g/cm3.\",\"PeriodicalId\":19463,\"journal\":{\"name\":\"NOVYE OGNEUPORY (NEW REFRACTORIES)\",\"volume\":\" 38\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOVYE OGNEUPORY (NEW REFRACTORIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17073/1683-4518-2023-8-28-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOVYE OGNEUPORY (NEW REFRACTORIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/1683-4518-2023-8-28-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of ultrafine powders obtained by mechanical grinding on the density of ceramic material made of aluminum and zirconium oxides
The results of grinding powdered, solid zirconium and aluminum oxides in various grinding units: ball, planetary and bead mills are presented. The grinding materials were: partially yttrium-stabilized zirconium dioxide of the PSZ-5,5Y brand (USA) and alumina with an alpha phase content of more than 99,0 wt. % of the brand Almatis CT 3000 GS (Germany). It is shown that in order to obtain high-purity, ultrafine oxide powders, it is advisable to use bead mills with zirconium dioxide grinding balls with dimensions of 0,6‒0,8 mm, with a ratio of M : W, as 1 : 4 and a specific grinding energy of 0,6‒0,8 kW. Achieving the ultrafine state of the initial oxide powders activates their solid-phase sintering, increases the density of ceramic materials: for aluminum oxide from 3,50‒3,78 g/cm3, for zirconium oxide from 5,40‒5,89 g/cm3.