Linfei Hou, Honglin Liu, Ting Yang, Shuaibin An, Rui Wang
{"title":"基于 DNN 的高超音速助推滑翔飞行器智能自主变形决策方法","authors":"Linfei Hou, Honglin Liu, Ting Yang, Shuaibin An, Rui Wang","doi":"10.3390/aerospace10121008","DOIUrl":null,"url":null,"abstract":"In addressing the morphing problem in vehicle flight, some scholars have primarily employed reinforcement learning methods to make morphing decisions based on task. However, they have not considered the constraints associated with the task process. The innovation of this article is that it proposes an intelligent morphing decision method based on deep neural networks (DNNs) for the autonomous morphing decision problem of hypersonic boost-glide morphing vehicles under process constraints. Firstly, we established a dynamic model of a hypersonic boost-glide morphing vehicle with a continuously variable sweep angle. Then, in order to address the decision optimality problem considering errors and the heat flux density constraint problem during the gliding process, interference was introduced to the datum trajectory in segments. Subsequently, re-optimization was performed to generate a trajectory sample library, which was used to train an intelligent decision-maker using a DNN. The simulation results demonstrated that, compared with the conventional programmatic morphing approach, the intelligent morphing decision maker could dynamically determine the sweep angle based on the current flight state, leading to improved range while still adhering to the heat flux density constraint. This validates the effectiveness and robustness of the proposed intelligent decision-maker.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":" 29","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Autonomous Morphing Decision Approach for Hypersonic Boost-Glide Vehicles Based on DNNs\",\"authors\":\"Linfei Hou, Honglin Liu, Ting Yang, Shuaibin An, Rui Wang\",\"doi\":\"10.3390/aerospace10121008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In addressing the morphing problem in vehicle flight, some scholars have primarily employed reinforcement learning methods to make morphing decisions based on task. However, they have not considered the constraints associated with the task process. The innovation of this article is that it proposes an intelligent morphing decision method based on deep neural networks (DNNs) for the autonomous morphing decision problem of hypersonic boost-glide morphing vehicles under process constraints. Firstly, we established a dynamic model of a hypersonic boost-glide morphing vehicle with a continuously variable sweep angle. Then, in order to address the decision optimality problem considering errors and the heat flux density constraint problem during the gliding process, interference was introduced to the datum trajectory in segments. Subsequently, re-optimization was performed to generate a trajectory sample library, which was used to train an intelligent decision-maker using a DNN. The simulation results demonstrated that, compared with the conventional programmatic morphing approach, the intelligent morphing decision maker could dynamically determine the sweep angle based on the current flight state, leading to improved range while still adhering to the heat flux density constraint. This validates the effectiveness and robustness of the proposed intelligent decision-maker.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\" 29\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10121008\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10121008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
An Intelligent Autonomous Morphing Decision Approach for Hypersonic Boost-Glide Vehicles Based on DNNs
In addressing the morphing problem in vehicle flight, some scholars have primarily employed reinforcement learning methods to make morphing decisions based on task. However, they have not considered the constraints associated with the task process. The innovation of this article is that it proposes an intelligent morphing decision method based on deep neural networks (DNNs) for the autonomous morphing decision problem of hypersonic boost-glide morphing vehicles under process constraints. Firstly, we established a dynamic model of a hypersonic boost-glide morphing vehicle with a continuously variable sweep angle. Then, in order to address the decision optimality problem considering errors and the heat flux density constraint problem during the gliding process, interference was introduced to the datum trajectory in segments. Subsequently, re-optimization was performed to generate a trajectory sample library, which was used to train an intelligent decision-maker using a DNN. The simulation results demonstrated that, compared with the conventional programmatic morphing approach, the intelligent morphing decision maker could dynamically determine the sweep angle based on the current flight state, leading to improved range while still adhering to the heat flux density constraint. This validates the effectiveness and robustness of the proposed intelligent decision-maker.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.