电子商务协同过滤推荐系统算法比较分析

Kapil Saini, Ajmer Singh
{"title":"电子商务协同过滤推荐系统算法比较分析","authors":"Kapil Saini, Ajmer Singh","doi":"10.32629/jai.v7i2.1182","DOIUrl":null,"url":null,"abstract":"Collaborative recommender systems are information filtering systems that seek to predict a user’s rating or preference for an item. They play a vital role in various business use cases, such as personalized recommendations, item ranking and sorting, targeted marketing and promotions, content curation and catalog organization, and feedback analysis and quality control. When evaluating these systems, rating prediction metrics are commonly employed. Efficiency, including the prediction time, is another crucial aspect to consider. In this study, the performance of different algorithms was investigated. The study employed a dataset consisting of e-commerce product ratings and assessed the algorithms based on rating prediction metrics and efficiency. The results demonstrated that each algorithm had its own set of strengths and weaknesses. For the metric of Root Mean Squared Error (RMSE), the BaselineOnly algorithm achieved the lowest mean value. Regarding Mean Absolute Error (MAE), the Singular Value Decomposition with Positive Perturbations Singular Value Decomposition with Positive Perturbations (SVDPP) algorithm exhibited the lowest mean value; Mean Squared Error (MSE) also achieved the lowest mean value. Moreover, the BaselineOnly algorithm showcased superior performance with the lowest mean test times when considering efficiency. Researchers and practitioners can use the findings of this study to select the best algorithm for a particular application. Researchers can develop new algorithms that combine the strengths of different algorithms. Practitioners can also use the findings of this study to tune the parameters of existing algorithms.","PeriodicalId":307060,"journal":{"name":"Journal of Autonomous Intelligence","volume":"37 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of collaborative filtering recommender system algorithms for e-commerce\",\"authors\":\"Kapil Saini, Ajmer Singh\",\"doi\":\"10.32629/jai.v7i2.1182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative recommender systems are information filtering systems that seek to predict a user’s rating or preference for an item. They play a vital role in various business use cases, such as personalized recommendations, item ranking and sorting, targeted marketing and promotions, content curation and catalog organization, and feedback analysis and quality control. When evaluating these systems, rating prediction metrics are commonly employed. Efficiency, including the prediction time, is another crucial aspect to consider. In this study, the performance of different algorithms was investigated. The study employed a dataset consisting of e-commerce product ratings and assessed the algorithms based on rating prediction metrics and efficiency. The results demonstrated that each algorithm had its own set of strengths and weaknesses. For the metric of Root Mean Squared Error (RMSE), the BaselineOnly algorithm achieved the lowest mean value. Regarding Mean Absolute Error (MAE), the Singular Value Decomposition with Positive Perturbations Singular Value Decomposition with Positive Perturbations (SVDPP) algorithm exhibited the lowest mean value; Mean Squared Error (MSE) also achieved the lowest mean value. Moreover, the BaselineOnly algorithm showcased superior performance with the lowest mean test times when considering efficiency. Researchers and practitioners can use the findings of this study to select the best algorithm for a particular application. Researchers can develop new algorithms that combine the strengths of different algorithms. Practitioners can also use the findings of this study to tune the parameters of existing algorithms.\",\"PeriodicalId\":307060,\"journal\":{\"name\":\"Journal of Autonomous Intelligence\",\"volume\":\"37 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Autonomous Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32629/jai.v7i2.1182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i2.1182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

协作推荐系统是一种信息过滤系统,旨在预测用户对某个项目的评价或偏好。它们在各种业务用例中发挥着重要作用,如个性化推荐、项目排名和排序、定向营销和促销、内容策划和目录组织以及反馈分析和质量控制。在评估这些系统时,通常会采用评级预测指标。包括预测时间在内的效率是需要考虑的另一个重要方面。本研究调查了不同算法的性能。研究采用了一个由电子商务产品评分组成的数据集,并根据评分预测指标和效率对算法进行了评估。结果表明,每种算法都有自己的优缺点。在均方根误差(RMSE)指标上,BaselineOnly 算法的平均值最低。在平均绝对误差(MAE)方面,带正扰动的奇异值分解算法(SVDPP)的平均值最低;平均平方误差(MSE)的平均值也最低。此外,在考虑效率时,BaselineOnly 算法以最低的平均测试时间展示了卓越的性能。研究人员和从业人员可以利用本研究的结果,为特定应用选择最佳算法。研究人员可以结合不同算法的优势开发新算法。实践者也可以利用本研究的结果来调整现有算法的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of collaborative filtering recommender system algorithms for e-commerce
Collaborative recommender systems are information filtering systems that seek to predict a user’s rating or preference for an item. They play a vital role in various business use cases, such as personalized recommendations, item ranking and sorting, targeted marketing and promotions, content curation and catalog organization, and feedback analysis and quality control. When evaluating these systems, rating prediction metrics are commonly employed. Efficiency, including the prediction time, is another crucial aspect to consider. In this study, the performance of different algorithms was investigated. The study employed a dataset consisting of e-commerce product ratings and assessed the algorithms based on rating prediction metrics and efficiency. The results demonstrated that each algorithm had its own set of strengths and weaknesses. For the metric of Root Mean Squared Error (RMSE), the BaselineOnly algorithm achieved the lowest mean value. Regarding Mean Absolute Error (MAE), the Singular Value Decomposition with Positive Perturbations Singular Value Decomposition with Positive Perturbations (SVDPP) algorithm exhibited the lowest mean value; Mean Squared Error (MSE) also achieved the lowest mean value. Moreover, the BaselineOnly algorithm showcased superior performance with the lowest mean test times when considering efficiency. Researchers and practitioners can use the findings of this study to select the best algorithm for a particular application. Researchers can develop new algorithms that combine the strengths of different algorithms. Practitioners can also use the findings of this study to tune the parameters of existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信