Lívia de Oliveira Sales, L. L. B. de Oliveira, Jean Breno Silveira da Silva, M. O. de Moraes Filho, M. E. D. de Moraes, R. Montenegro, C. Moreira-Nunes
{"title":"血小板分子在 COVID-19 患者风险分层中的作用","authors":"Lívia de Oliveira Sales, L. L. B. de Oliveira, Jean Breno Silveira da Silva, M. O. de Moraes Filho, M. E. D. de Moraes, R. Montenegro, C. Moreira-Nunes","doi":"10.3390/hemato4040029","DOIUrl":null,"url":null,"abstract":"The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in China and is responsible for Coronavirus disease (COVID-19). Despite being well tolerated by most patients, a fraction of cases evolve into a potentially fatal condition requiring intensive care. In addition to respiratory complications, several studies have reported cases of patients who developed intense thrombosis, including acute myocardial infarction and ischemic stroke, as well as the presence of elevated coagulation markers. Evidence has shown that the virus can interact directly with platelets and modulate their thrombotic and inflammatory functions, with significant prognostic implications. It is important to highlight that the emerging literature shows that when hyperactive these cells can act as pro-viral infections both in transporting their particles and in increasing inflammation, leading to a hyperinflammatory state and consequent clinical worsening. In this review, we searched for studies available in public databases and discussed the interaction of platelet biomarkers in the pathogenesis of COVID-19. In this context, understanding the mechanism of SARS-CoV-2 and these cells in different clinical conditions could help us to understand the coagulation and inflammation profiles of critically ill patients with the disease, guiding faster clinical management and enabling the reuse and targeting of more efficient therapies.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":"190 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Platelet Molecules in Risk Stratification of Patients with COVID-19\",\"authors\":\"Lívia de Oliveira Sales, L. L. B. de Oliveira, Jean Breno Silveira da Silva, M. O. de Moraes Filho, M. E. D. de Moraes, R. Montenegro, C. Moreira-Nunes\",\"doi\":\"10.3390/hemato4040029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in China and is responsible for Coronavirus disease (COVID-19). Despite being well tolerated by most patients, a fraction of cases evolve into a potentially fatal condition requiring intensive care. In addition to respiratory complications, several studies have reported cases of patients who developed intense thrombosis, including acute myocardial infarction and ischemic stroke, as well as the presence of elevated coagulation markers. Evidence has shown that the virus can interact directly with platelets and modulate their thrombotic and inflammatory functions, with significant prognostic implications. It is important to highlight that the emerging literature shows that when hyperactive these cells can act as pro-viral infections both in transporting their particles and in increasing inflammation, leading to a hyperinflammatory state and consequent clinical worsening. In this review, we searched for studies available in public databases and discussed the interaction of platelet biomarkers in the pathogenesis of COVID-19. In this context, understanding the mechanism of SARS-CoV-2 and these cells in different clinical conditions could help us to understand the coagulation and inflammation profiles of critically ill patients with the disease, guiding faster clinical management and enabling the reuse and targeting of more efficient therapies.\",\"PeriodicalId\":93705,\"journal\":{\"name\":\"Hemato\",\"volume\":\"190 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hemato\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hemato4040029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemato","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hemato4040029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
The Role of Platelet Molecules in Risk Stratification of Patients with COVID-19
The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in China and is responsible for Coronavirus disease (COVID-19). Despite being well tolerated by most patients, a fraction of cases evolve into a potentially fatal condition requiring intensive care. In addition to respiratory complications, several studies have reported cases of patients who developed intense thrombosis, including acute myocardial infarction and ischemic stroke, as well as the presence of elevated coagulation markers. Evidence has shown that the virus can interact directly with platelets and modulate their thrombotic and inflammatory functions, with significant prognostic implications. It is important to highlight that the emerging literature shows that when hyperactive these cells can act as pro-viral infections both in transporting their particles and in increasing inflammation, leading to a hyperinflammatory state and consequent clinical worsening. In this review, we searched for studies available in public databases and discussed the interaction of platelet biomarkers in the pathogenesis of COVID-19. In this context, understanding the mechanism of SARS-CoV-2 and these cells in different clinical conditions could help us to understand the coagulation and inflammation profiles of critically ill patients with the disease, guiding faster clinical management and enabling the reuse and targeting of more efficient therapies.