{"title":"环结构,其中每个元素都是 3、4 或 5 个交换三等分元素之和","authors":"Kumar Napoleon, Deka, Helen K. Saikia","doi":"10.37418/amsj.12.11.4","DOIUrl":null,"url":null,"abstract":"In this paper we show if $R$ be a ring in which every element is sum of three commuting tripotents then for every $k\\in R$ we have $(k-3)(k-2)^2(k-1)^2k^2(k+1)^2(k+2)^2(k+3)=0$, if every element of $R$ is sum of four commuting tripotents then for every $k\\in R$ we have $(k-4)(k-3)(k-2)^2(k-1)^2k^4(k+1)^2(k+2)^2(k+3)(k+4)=0$, if every element of $R$ is sum of five commuting tripotents then for every $k\\in R$ we have $(k-5)(k-4)(k-3)^2(k-2)^3(k-1)^3k^4(k+1)^3(k+2)^3(k+3)^2(k+4)(k+5)=0$. Then we discuss the properties of these type of ring. Finally we find the general structure of a ring in which every element is sum of $n$ commuting tripotents and discuss the properties of it.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"24 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STRUCTURE OF A RING IN WHICH EVERY ELEMENT IS SUM OF 3, 4 OR 5 COMMUTING TRIPOTENTS\",\"authors\":\"Kumar Napoleon, Deka, Helen K. Saikia\",\"doi\":\"10.37418/amsj.12.11.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show if $R$ be a ring in which every element is sum of three commuting tripotents then for every $k\\\\in R$ we have $(k-3)(k-2)^2(k-1)^2k^2(k+1)^2(k+2)^2(k+3)=0$, if every element of $R$ is sum of four commuting tripotents then for every $k\\\\in R$ we have $(k-4)(k-3)(k-2)^2(k-1)^2k^4(k+1)^2(k+2)^2(k+3)(k+4)=0$, if every element of $R$ is sum of five commuting tripotents then for every $k\\\\in R$ we have $(k-5)(k-4)(k-3)^2(k-2)^3(k-1)^3k^4(k+1)^3(k+2)^3(k+3)^2(k+4)(k+5)=0$. Then we discuss the properties of these type of ring. Finally we find the general structure of a ring in which every element is sum of $n$ commuting tripotents and discuss the properties of it.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.11.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.11.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STRUCTURE OF A RING IN WHICH EVERY ELEMENT IS SUM OF 3, 4 OR 5 COMMUTING TRIPOTENTS
In this paper we show if $R$ be a ring in which every element is sum of three commuting tripotents then for every $k\in R$ we have $(k-3)(k-2)^2(k-1)^2k^2(k+1)^2(k+2)^2(k+3)=0$, if every element of $R$ is sum of four commuting tripotents then for every $k\in R$ we have $(k-4)(k-3)(k-2)^2(k-1)^2k^4(k+1)^2(k+2)^2(k+3)(k+4)=0$, if every element of $R$ is sum of five commuting tripotents then for every $k\in R$ we have $(k-5)(k-4)(k-3)^2(k-2)^3(k-1)^3k^4(k+1)^3(k+2)^3(k+3)^2(k+4)(k+5)=0$. Then we discuss the properties of these type of ring. Finally we find the general structure of a ring in which every element is sum of $n$ commuting tripotents and discuss the properties of it.