P(Z_{p^k-q^r})幂图的维纳指数、超维纳指数、哈拉里指数和 SK 指数

IF 0.4 Q4 MATHEMATICS
Volkan Aşkin
{"title":"P(Z_{p^k-q^r})幂图的维纳指数、超维纳指数、哈拉里指数和 SK 指数","authors":"Volkan Aşkin","doi":"10.7546/nntdm.2023.29.4.794-803","DOIUrl":null,"url":null,"abstract":"The undirected $P(Z_n)$ power graph of a finite group of $Z_n$ is a connected graph, the set of vertices of which is $Z_n$. Here $\\langle u, v\\rangle \\in P(Z_n)$ are two diverse adjacent vertices if and only if $u \\ne v$ and $\\langle v \\rangle \\subseteq \\langle u \\rangle$ or $\\langle u \\rangle \\subseteq \\langle v \\rangle$. We will shortly name the undirected $P(Z_n)$ power graph as the power graph $P(Z_n)$. The Wiener, hyper-Wiener, Harary and SK indices of the $P(Z_n)$ power graph are in order as follows $$\\frac{1}{2}\\underset{\\left\\{ u,v \\right\\}\\subseteq V\\left( G \\right)}{\\mathop \\sum }\\,d\\left( u,v \\right), \\ \\frac{1}{2}\\underset{\\left\\{ u,v \\right\\}\\subseteq V\\left( G \\right)}{\\mathop \\sum }\\,d\\left( u,v \\right)+\\frac{1}{2}\\underset{\\left\\{ u,v \\right\\}\\subseteq V\\left( G \\right)}{\\mathop \\sum }\\,{{d}^{2}}\\left(u,v \\right),$$ $$\\underset{\\left\\{ u,v \\right\\}\\subseteq V\\left( G \\right)}{\\mathop \\sum }\\,\\frac{1}{d\\left(u,v \\right)} \\mbox{ and } \\frac{1}{2}\\underset{uv\\in E\\left( G \\right)}{\\mathop \\sum }\\,\\left( {{d}_{u}}+{{d}_{v}} \\right).$$ In this article we focus more on the indices of $P(Z_n)$ power graph by Wiener, hyper-Wiener, Harary and SK the definition of the power graph is presented and the results and theorems which we need in our discussion are provided in the introduction. Finally, the main point of the article is that we calculate the Wiener, hyper-Wiener, Harary and SK indices of the power graph $P(Z_n)$ corresponding to the vertex $n = p^k \\cdot q^r$. These are as follows: $p, q$ are distinct primes and $k, r$ are nonnegative integers.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":"67 5","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Wiener, hyper-Wiener, Harary and SK indices of the P(Z_{p^k·q^r}) power graph\",\"authors\":\"Volkan Aşkin\",\"doi\":\"10.7546/nntdm.2023.29.4.794-803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The undirected $P(Z_n)$ power graph of a finite group of $Z_n$ is a connected graph, the set of vertices of which is $Z_n$. Here $\\\\langle u, v\\\\rangle \\\\in P(Z_n)$ are two diverse adjacent vertices if and only if $u \\\\ne v$ and $\\\\langle v \\\\rangle \\\\subseteq \\\\langle u \\\\rangle$ or $\\\\langle u \\\\rangle \\\\subseteq \\\\langle v \\\\rangle$. We will shortly name the undirected $P(Z_n)$ power graph as the power graph $P(Z_n)$. The Wiener, hyper-Wiener, Harary and SK indices of the $P(Z_n)$ power graph are in order as follows $$\\\\frac{1}{2}\\\\underset{\\\\left\\\\{ u,v \\\\right\\\\}\\\\subseteq V\\\\left( G \\\\right)}{\\\\mathop \\\\sum }\\\\,d\\\\left( u,v \\\\right), \\\\ \\\\frac{1}{2}\\\\underset{\\\\left\\\\{ u,v \\\\right\\\\}\\\\subseteq V\\\\left( G \\\\right)}{\\\\mathop \\\\sum }\\\\,d\\\\left( u,v \\\\right)+\\\\frac{1}{2}\\\\underset{\\\\left\\\\{ u,v \\\\right\\\\}\\\\subseteq V\\\\left( G \\\\right)}{\\\\mathop \\\\sum }\\\\,{{d}^{2}}\\\\left(u,v \\\\right),$$ $$\\\\underset{\\\\left\\\\{ u,v \\\\right\\\\}\\\\subseteq V\\\\left( G \\\\right)}{\\\\mathop \\\\sum }\\\\,\\\\frac{1}{d\\\\left(u,v \\\\right)} \\\\mbox{ and } \\\\frac{1}{2}\\\\underset{uv\\\\in E\\\\left( G \\\\right)}{\\\\mathop \\\\sum }\\\\,\\\\left( {{d}_{u}}+{{d}_{v}} \\\\right).$$ In this article we focus more on the indices of $P(Z_n)$ power graph by Wiener, hyper-Wiener, Harary and SK the definition of the power graph is presented and the results and theorems which we need in our discussion are provided in the introduction. Finally, the main point of the article is that we calculate the Wiener, hyper-Wiener, Harary and SK indices of the power graph $P(Z_n)$ corresponding to the vertex $n = p^k \\\\cdot q^r$. These are as follows: $p, q$ are distinct primes and $k, r$ are nonnegative integers.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\"67 5\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.4.794-803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.4.794-803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

$Z_n$的有限群的无向$P(Z_n)$幂图是一个连通图,其顶点集合为$Z_n$。这里,P(Z_n)$中的 $ulangle u, v\rangle \是两个不同的相邻顶点,当且仅当 $u \ne v$ 和 $ulangle v \rangle \subseteq \langle u \rangle$ 或 $ulangle u \rangle \subseteq \langle v \rangle$。我们很快会把不定向的 $P(Z_n)$ 幂图命名为幂图 $P(Z_n)$。$P(Z_n)$ 幂图的维纳指数、超维纳指数、哈拉里指数和 SK 指数依次为 $$frac{1}{2}\underset{left\{ u、v \right}\subseteq V\left( G \right)}{\mathop \sum }\,d\left( u,v \right),\frac{1}{2}\underset{left\{ u,v \right}\subseteq V\left( G \right)}{\mathop \sum }\、d\left( u,v \right)+\frac{1}{2}\underset{left\{ u,v \right}\subseteq V\left( G \right)}{\mathop \sum }\,{{d}^{2}}\left(u. v \right), $$$ V\left( G \right)}{\mathop \sum }、v \right),$$$underset{left\{ u,v \right}\subseteq V\left( G \right)}{mathop \sum }\,\frac{1}{d\left(u,v \right)} \mbox{ and }\frac{1}{2}\underset{uv\in E\left( G\right)}{mathop \sum }\left( {{d}_{u}}+{{d}_{v}} \right).$$ 在本文中,我们将更多地关注维纳、超维纳、哈拉里和 SK 的 $P(Z_n)$ 幂图的指数,并在引言中介绍了幂图的定义以及讨论中所需的结果和定理。最后,文章的重点是我们计算与顶点 $n = p^k \cdot q^r$ 相对应的幂图 $P(Z_n)$的维纳、超维纳、哈拉里和 SK 指数。这些指数如下:$p, q$ 为不同的素数,$k, r$ 为非负整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Wiener, hyper-Wiener, Harary and SK indices of the P(Z_{p^k·q^r}) power graph
The undirected $P(Z_n)$ power graph of a finite group of $Z_n$ is a connected graph, the set of vertices of which is $Z_n$. Here $\langle u, v\rangle \in P(Z_n)$ are two diverse adjacent vertices if and only if $u \ne v$ and $\langle v \rangle \subseteq \langle u \rangle$ or $\langle u \rangle \subseteq \langle v \rangle$. We will shortly name the undirected $P(Z_n)$ power graph as the power graph $P(Z_n)$. The Wiener, hyper-Wiener, Harary and SK indices of the $P(Z_n)$ power graph are in order as follows $$\frac{1}{2}\underset{\left\{ u,v \right\}\subseteq V\left( G \right)}{\mathop \sum }\,d\left( u,v \right), \ \frac{1}{2}\underset{\left\{ u,v \right\}\subseteq V\left( G \right)}{\mathop \sum }\,d\left( u,v \right)+\frac{1}{2}\underset{\left\{ u,v \right\}\subseteq V\left( G \right)}{\mathop \sum }\,{{d}^{2}}\left(u,v \right),$$ $$\underset{\left\{ u,v \right\}\subseteq V\left( G \right)}{\mathop \sum }\,\frac{1}{d\left(u,v \right)} \mbox{ and } \frac{1}{2}\underset{uv\in E\left( G \right)}{\mathop \sum }\,\left( {{d}_{u}}+{{d}_{v}} \right).$$ In this article we focus more on the indices of $P(Z_n)$ power graph by Wiener, hyper-Wiener, Harary and SK the definition of the power graph is presented and the results and theorems which we need in our discussion are provided in the introduction. Finally, the main point of the article is that we calculate the Wiener, hyper-Wiener, Harary and SK indices of the power graph $P(Z_n)$ corresponding to the vertex $n = p^k \cdot q^r$. These are as follows: $p, q$ are distinct primes and $k, r$ are nonnegative integers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信