{"title":"多标准决策中两种方法的比较:在传动杆材料选择中的应用","authors":"H. Thinh, N. Mai","doi":"10.21303/2461-4262.2023.003046","DOIUrl":null,"url":null,"abstract":"Transmission rod is an indispensable part in diesel and gasoline engines. Its job is to convert rotation into translational motion or vice versa. The transmission rod material selection plays a very important role, affecting its working function and durability. This study was conducted to compare two Multi Criteria Decision Making (MCDM) methods in transmission rod material selection. They are PIV (Proximity Indexed Value) method, and FUCA (Faire Un Choi Adéquat) method. Seven types of steel commonly used in transmission rods were reviewed for ranking, inclusive of: 20 steel, 40 steel, 45 steel, 18Cr2Ni4WA steel, 30 CrMoA steel, 45Mn2 steel and 40CrNi steel. Nine parameters were used as criteria to evaluate each steel including minimum yield strength, ultimate tensile strength, minimum elongation ratio, contraction ratio, modulus of elasticity, mean coefficient of thermal expansion, thermal conductivity, specific thermal capacity, and density. The weights of the criteria were calculated using three methods inclusive of MEAN weight method, Entropy weight method and MEREC weight method (Method based on the Removal Effects of Criteria). Each MCDM method was combined with the three weight methods mentioned above to rank the alternatives. The obtained results show that when using both PIV and FUCA methods to rank the alternatives, the best and worst alternatives are found regardless of the weight of the criteria. The best alternative determined using the PIV method is also the best alternative determined using the FUCA method. It means that the two PIV and FUCA methods have been shown to be equally effective. Among the seven transmission rod materials reviewed, 20 steel was identified as the best, and 40CrNi steel was identified as the worst","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of two methods in multi-criteria decision-making: application in transmission rod material selection\",\"authors\":\"H. Thinh, N. Mai\",\"doi\":\"10.21303/2461-4262.2023.003046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transmission rod is an indispensable part in diesel and gasoline engines. Its job is to convert rotation into translational motion or vice versa. The transmission rod material selection plays a very important role, affecting its working function and durability. This study was conducted to compare two Multi Criteria Decision Making (MCDM) methods in transmission rod material selection. They are PIV (Proximity Indexed Value) method, and FUCA (Faire Un Choi Adéquat) method. Seven types of steel commonly used in transmission rods were reviewed for ranking, inclusive of: 20 steel, 40 steel, 45 steel, 18Cr2Ni4WA steel, 30 CrMoA steel, 45Mn2 steel and 40CrNi steel. Nine parameters were used as criteria to evaluate each steel including minimum yield strength, ultimate tensile strength, minimum elongation ratio, contraction ratio, modulus of elasticity, mean coefficient of thermal expansion, thermal conductivity, specific thermal capacity, and density. The weights of the criteria were calculated using three methods inclusive of MEAN weight method, Entropy weight method and MEREC weight method (Method based on the Removal Effects of Criteria). Each MCDM method was combined with the three weight methods mentioned above to rank the alternatives. The obtained results show that when using both PIV and FUCA methods to rank the alternatives, the best and worst alternatives are found regardless of the weight of the criteria. The best alternative determined using the PIV method is also the best alternative determined using the FUCA method. It means that the two PIV and FUCA methods have been shown to be equally effective. Among the seven transmission rod materials reviewed, 20 steel was identified as the best, and 40CrNi steel was identified as the worst\",\"PeriodicalId\":11804,\"journal\":{\"name\":\"EUREKA: Physics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUREKA: Physics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21303/2461-4262.2023.003046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUREKA: Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21303/2461-4262.2023.003046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Comparison of two methods in multi-criteria decision-making: application in transmission rod material selection
Transmission rod is an indispensable part in diesel and gasoline engines. Its job is to convert rotation into translational motion or vice versa. The transmission rod material selection plays a very important role, affecting its working function and durability. This study was conducted to compare two Multi Criteria Decision Making (MCDM) methods in transmission rod material selection. They are PIV (Proximity Indexed Value) method, and FUCA (Faire Un Choi Adéquat) method. Seven types of steel commonly used in transmission rods were reviewed for ranking, inclusive of: 20 steel, 40 steel, 45 steel, 18Cr2Ni4WA steel, 30 CrMoA steel, 45Mn2 steel and 40CrNi steel. Nine parameters were used as criteria to evaluate each steel including minimum yield strength, ultimate tensile strength, minimum elongation ratio, contraction ratio, modulus of elasticity, mean coefficient of thermal expansion, thermal conductivity, specific thermal capacity, and density. The weights of the criteria were calculated using three methods inclusive of MEAN weight method, Entropy weight method and MEREC weight method (Method based on the Removal Effects of Criteria). Each MCDM method was combined with the three weight methods mentioned above to rank the alternatives. The obtained results show that when using both PIV and FUCA methods to rank the alternatives, the best and worst alternatives are found regardless of the weight of the criteria. The best alternative determined using the PIV method is also the best alternative determined using the FUCA method. It means that the two PIV and FUCA methods have been shown to be equally effective. Among the seven transmission rod materials reviewed, 20 steel was identified as the best, and 40CrNi steel was identified as the worst