基于 EEMD 和 LSSVM 双重分类的癫痫预测

IF 0.6 Q4 ENGINEERING, BIOMEDICAL
Xia Zhang, C. Yan
{"title":"基于 EEMD 和 LSSVM 双重分类的癫痫预测","authors":"Xia Zhang, C. Yan","doi":"10.4015/s1016237223500394","DOIUrl":null,"url":null,"abstract":"Epilepsy seizures are caused by abnormal, excessive, or synchronized neuronal activity in the brain, which is difficult to treat and is extremely stubborn. Therefore, studying the activity of epilepsy can greatly contribute to its diagnosis and treatment. The original signal is decomposed into IMFs and residual by ensemble empirical mode decomposition (EEMD), and then the first three intrinsic mode functions (IMF) are selected to replace the original signal, and the nonlinear and non-stationary problems of the original signal are solved. The Least Squares Support Vector Machine (LSSVM) was used as the classifier, its parameters (gam and sig2) are optimized by Particle Swarm Optimization (PSO). The experiment used the EEG database published by the University of Bonn (UoB) to realize the classification of normal, interictal and ictal periods. When PSO was employed, the recognition accuracy of the test set was 93.33%, with a classification time of 0.035 s and the Information Transfer Rate (ITR) of 3.77 bpm in training 70 classes with 100 samples each. In contrast, without PSO, the recognition accuracy of the test set was 92%, with a classification time of 0.039 s and the ITR of 2.88 bpm without PSO in training 70 classes with 100 samples each. The experimental results show that EEMD and LSSVM can effectively implement the three-classification problem and provide an effective means for the onset prediction of epilepsy patients.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREDICTION OF EPILEPSY BASED ON EEMD AND LSSVM DOUBLE CLASSIFICATION\",\"authors\":\"Xia Zhang, C. Yan\",\"doi\":\"10.4015/s1016237223500394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy seizures are caused by abnormal, excessive, or synchronized neuronal activity in the brain, which is difficult to treat and is extremely stubborn. Therefore, studying the activity of epilepsy can greatly contribute to its diagnosis and treatment. The original signal is decomposed into IMFs and residual by ensemble empirical mode decomposition (EEMD), and then the first three intrinsic mode functions (IMF) are selected to replace the original signal, and the nonlinear and non-stationary problems of the original signal are solved. The Least Squares Support Vector Machine (LSSVM) was used as the classifier, its parameters (gam and sig2) are optimized by Particle Swarm Optimization (PSO). The experiment used the EEG database published by the University of Bonn (UoB) to realize the classification of normal, interictal and ictal periods. When PSO was employed, the recognition accuracy of the test set was 93.33%, with a classification time of 0.035 s and the Information Transfer Rate (ITR) of 3.77 bpm in training 70 classes with 100 samples each. In contrast, without PSO, the recognition accuracy of the test set was 92%, with a classification time of 0.039 s and the ITR of 2.88 bpm without PSO in training 70 classes with 100 samples each. The experimental results show that EEMD and LSSVM can effectively implement the three-classification problem and provide an effective means for the onset prediction of epilepsy patients.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237223500394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

癫痫发作是由于大脑神经元活动异常、过度或同步化引起的,治疗难度大,且极其顽固。因此,研究癫痫的活动对其诊断和治疗大有裨益。通过集合经验模态分解(EEMD)将原始信号分解为IMF和残差,然后选择前三个本征模态函数(IMF)代替原始信号,解决了原始信号的非线性和非平稳问题。分类器采用最小二乘支持向量机(LSSVM),其参数(gam 和 sig2)通过粒子群优化(PSO)进行优化。实验使用波恩大学(UoB)发布的脑电图数据库实现了正常期、发作间期和发作期的分类。在使用 PSO 的情况下,测试集的识别准确率为 93.33%,分类时间为 0.035 秒,信息传输率(ITR)为 3.77 bpm(训练 70 个类别,每个类别 100 个样本)。相比之下,在不使用 PSO 的情况下,测试集的识别准确率为 92%,分类时间为 0.039 s,在训练 70 个类别(每个类别 100 个样本)时的信息传输率为 2.88 bpm。实验结果表明,EEMD 和 LSSVM 能有效实现三分类问题,为癫痫患者的发病预测提供了有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREDICTION OF EPILEPSY BASED ON EEMD AND LSSVM DOUBLE CLASSIFICATION
Epilepsy seizures are caused by abnormal, excessive, or synchronized neuronal activity in the brain, which is difficult to treat and is extremely stubborn. Therefore, studying the activity of epilepsy can greatly contribute to its diagnosis and treatment. The original signal is decomposed into IMFs and residual by ensemble empirical mode decomposition (EEMD), and then the first three intrinsic mode functions (IMF) are selected to replace the original signal, and the nonlinear and non-stationary problems of the original signal are solved. The Least Squares Support Vector Machine (LSSVM) was used as the classifier, its parameters (gam and sig2) are optimized by Particle Swarm Optimization (PSO). The experiment used the EEG database published by the University of Bonn (UoB) to realize the classification of normal, interictal and ictal periods. When PSO was employed, the recognition accuracy of the test set was 93.33%, with a classification time of 0.035 s and the Information Transfer Rate (ITR) of 3.77 bpm in training 70 classes with 100 samples each. In contrast, without PSO, the recognition accuracy of the test set was 92%, with a classification time of 0.039 s and the ITR of 2.88 bpm without PSO in training 70 classes with 100 samples each. The experimental results show that EEMD and LSSVM can effectively implement the three-classification problem and provide an effective means for the onset prediction of epilepsy patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering: Applications, Basis and Communications
Biomedical Engineering: Applications, Basis and Communications Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.50
自引率
11.10%
发文量
36
审稿时长
4 months
期刊介绍: Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies. Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信