基于知识蒸馏的小型无人机 GPS 欺骗检测

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Future Internet Pub Date : 2023-11-30 DOI:10.3390/fi15120389
Yingying Ren, Ryan D. Restivo, Wenkai Tan, Jian Wang, Yongxin Liu, Bin Jiang, Huihui Wang, H. Song
{"title":"基于知识蒸馏的小型无人机 GPS 欺骗检测","authors":"Yingying Ren, Ryan D. Restivo, Wenkai Tan, Jian Wang, Yongxin Liu, Bin Jiang, Huihui Wang, H. Song","doi":"10.3390/fi15120389","DOIUrl":null,"url":null,"abstract":"As a core component of small unmanned aerial vehicles (UAVs), GPS is playing a critical role in providing localization for UAV navigation. UAVs are an important factor in the large-scale deployment of the Internet of Things (IoT) and cyber–physical systems (CPS). However, GPS is vulnerable to spoofing attacks that can mislead a UAV to fly into a sensitive area and threaten public safety and private security. The conventional spoofing detection methods need too much overhead, which stops efficient detection from working in a computation-constrained UAV and provides an efficient response to attacks. In this paper, we propose a novel approach to obtain a lightweight detection model in the UAV system so that GPS spoofing attacks can be detected from a long distance. With long-short term memory (LSTM), we propose a lightweight detection model on the ground control stations, and then we distill it into a compact size that is able to run in the control system of the UAV with knowledge distillation. The experimental results show that our lightweight detection algorithm runs in UAV systems reliably and can achieve good performance in GPS spoofing detection.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"15 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Distillation-Based GPS Spoofing Detection for Small UAV\",\"authors\":\"Yingying Ren, Ryan D. Restivo, Wenkai Tan, Jian Wang, Yongxin Liu, Bin Jiang, Huihui Wang, H. Song\",\"doi\":\"10.3390/fi15120389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a core component of small unmanned aerial vehicles (UAVs), GPS is playing a critical role in providing localization for UAV navigation. UAVs are an important factor in the large-scale deployment of the Internet of Things (IoT) and cyber–physical systems (CPS). However, GPS is vulnerable to spoofing attacks that can mislead a UAV to fly into a sensitive area and threaten public safety and private security. The conventional spoofing detection methods need too much overhead, which stops efficient detection from working in a computation-constrained UAV and provides an efficient response to attacks. In this paper, we propose a novel approach to obtain a lightweight detection model in the UAV system so that GPS spoofing attacks can be detected from a long distance. With long-short term memory (LSTM), we propose a lightweight detection model on the ground control stations, and then we distill it into a compact size that is able to run in the control system of the UAV with knowledge distillation. The experimental results show that our lightweight detection algorithm runs in UAV systems reliably and can achieve good performance in GPS spoofing detection.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

作为小型无人机(UAV)的核心部件,GPS 在为无人机导航提供定位方面发挥着至关重要的作用。无人机是大规模部署物联网(IoT)和网络物理系统(CPS)的重要因素。然而,GPS 易受欺骗攻击,可能误导无人机飞入敏感区域,威胁公共安全和私人安全。传统的欺骗检测方法需要过多的开销,因此无法在计算受限的无人机中进行高效检测,也无法对攻击做出高效响应。在本文中,我们提出了一种在无人机系统中获得轻量级检测模型的新方法,从而可以从很远的距离检测到 GPS 欺骗攻击。通过长短期记忆(LSTM),我们在地面控制站提出了一个轻量级检测模型,然后将其提炼成一个小巧的模型,通过知识提炼使其能够在无人机控制系统中运行。实验结果表明,我们的轻量级检测算法能在无人机系统中可靠运行,并能在 GPS 欺骗检测中取得良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Distillation-Based GPS Spoofing Detection for Small UAV
As a core component of small unmanned aerial vehicles (UAVs), GPS is playing a critical role in providing localization for UAV navigation. UAVs are an important factor in the large-scale deployment of the Internet of Things (IoT) and cyber–physical systems (CPS). However, GPS is vulnerable to spoofing attacks that can mislead a UAV to fly into a sensitive area and threaten public safety and private security. The conventional spoofing detection methods need too much overhead, which stops efficient detection from working in a computation-constrained UAV and provides an efficient response to attacks. In this paper, we propose a novel approach to obtain a lightweight detection model in the UAV system so that GPS spoofing attacks can be detected from a long distance. With long-short term memory (LSTM), we propose a lightweight detection model on the ground control stations, and then we distill it into a compact size that is able to run in the control system of the UAV with knowledge distillation. The experimental results show that our lightweight detection algorithm runs in UAV systems reliably and can achieve good performance in GPS spoofing detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信