{"title":"基于 ICN 的 CDN 增强内容交付","authors":"Lei Gao, Xiaoyong Zhu","doi":"10.3390/fi15120390","DOIUrl":null,"url":null,"abstract":"With the rapid growth of internet traffic, the traditional host-to-host TCP/IP architecture is subject to many service limitations faced with content-oriented applications. Various novel network architectures have been proposed to solve these limitations, among which Information-Centric Networking (ICN) is one of the most prominent. ICN features the decoupling of content (service) from the physical devices storing (providing) it through location-independent naming, and offers inherent enhancement to network performance, such as multicast and in-network caching. ICN in-network caching has been extensively studied, and we believe that it may also be the main incentive for ISPs to deploy ICN. A CDN (content delivery network) is a typical content-oriented network paradigm that aims to provide the fast delivery of content. In this paper, we leverage the advantages of the in-network caching of ICN to enhance the content delivery efficiency of CDN by integrating ICN as a service. First, we present our design of a content delivery network enhanced with ICN, called IECDN. Additionally, we formulate a mathematical model to optimize the performance of our proposed design and conduct a series of evaluations. The results indicate that our proposed design provides significant performance gains while reducing bandwidth consumption and shows better resilience to traffic surge.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"9 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ICN-Based Enhanced Content Delivery for CDN\",\"authors\":\"Lei Gao, Xiaoyong Zhu\",\"doi\":\"10.3390/fi15120390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of internet traffic, the traditional host-to-host TCP/IP architecture is subject to many service limitations faced with content-oriented applications. Various novel network architectures have been proposed to solve these limitations, among which Information-Centric Networking (ICN) is one of the most prominent. ICN features the decoupling of content (service) from the physical devices storing (providing) it through location-independent naming, and offers inherent enhancement to network performance, such as multicast and in-network caching. ICN in-network caching has been extensively studied, and we believe that it may also be the main incentive for ISPs to deploy ICN. A CDN (content delivery network) is a typical content-oriented network paradigm that aims to provide the fast delivery of content. In this paper, we leverage the advantages of the in-network caching of ICN to enhance the content delivery efficiency of CDN by integrating ICN as a service. First, we present our design of a content delivery network enhanced with ICN, called IECDN. Additionally, we formulate a mathematical model to optimize the performance of our proposed design and conduct a series of evaluations. The results indicate that our proposed design provides significant performance gains while reducing bandwidth consumption and shows better resilience to traffic surge.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
With the rapid growth of internet traffic, the traditional host-to-host TCP/IP architecture is subject to many service limitations faced with content-oriented applications. Various novel network architectures have been proposed to solve these limitations, among which Information-Centric Networking (ICN) is one of the most prominent. ICN features the decoupling of content (service) from the physical devices storing (providing) it through location-independent naming, and offers inherent enhancement to network performance, such as multicast and in-network caching. ICN in-network caching has been extensively studied, and we believe that it may also be the main incentive for ISPs to deploy ICN. A CDN (content delivery network) is a typical content-oriented network paradigm that aims to provide the fast delivery of content. In this paper, we leverage the advantages of the in-network caching of ICN to enhance the content delivery efficiency of CDN by integrating ICN as a service. First, we present our design of a content delivery network enhanced with ICN, called IECDN. Additionally, we formulate a mathematical model to optimize the performance of our proposed design and conduct a series of evaluations. The results indicate that our proposed design provides significant performance gains while reducing bandwidth consumption and shows better resilience to traffic surge.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.