用于产生 H2 的氧化锌混合催化质子交换膜

APL Energy Pub Date : 2023-11-30 DOI:10.1063/5.0166260
Jay N. Mishra, P. Jha, P. Jha, Parvin K. Singh, Suman Roy Choudhary, Prabhakar Singh
{"title":"用于产生 H2 的氧化锌混合催化质子交换膜","authors":"Jay N. Mishra, P. Jha, P. Jha, Parvin K. Singh, Suman Roy Choudhary, Prabhakar Singh","doi":"10.1063/5.0166260","DOIUrl":null,"url":null,"abstract":"Electrocatalytic proton exchange membranes (PEMs) represent a promising avenue for advancing the field of electrochemical energy conversion and storage by combining the proton-conducting function of PEMs with enhanced catalytic activity by incorporation of metal ions. Here, we systematically studied the ZnO-based metal-organic framework (MOF) and found the introduction of pegylated ZnO to the (diethyl methylamine)/(H2PO4) matrix to form the p-type conducting MOF membrane with a bandgap of 3.67 eV. This membrane not only has a high protonic conductivity of 0.027 S/cm at 300 K with a transference number >0.99 but also possesses high activity (Tafel slope ∼36 mV/decade). The high reaction kinetics supported by finite element modeling simulations shows its ability to produce efficient and sustainable hydrogen. Our results suggest high current density of 1.52 mA/cm2, a turn over frequency [H2 (s−1)] ∼0.474×1018s−1, and a stability of 168 h in neutral medium (pH = 7). This work will enhance new strategies for fabricating membranes with ionic liquid in order to get membranes with protonic conductivity along with high activity for large-scale water electrolysis.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZnO incorporated hybrid catalytic proton exchange membrane for H2 generation\",\"authors\":\"Jay N. Mishra, P. Jha, P. Jha, Parvin K. Singh, Suman Roy Choudhary, Prabhakar Singh\",\"doi\":\"10.1063/5.0166260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocatalytic proton exchange membranes (PEMs) represent a promising avenue for advancing the field of electrochemical energy conversion and storage by combining the proton-conducting function of PEMs with enhanced catalytic activity by incorporation of metal ions. Here, we systematically studied the ZnO-based metal-organic framework (MOF) and found the introduction of pegylated ZnO to the (diethyl methylamine)/(H2PO4) matrix to form the p-type conducting MOF membrane with a bandgap of 3.67 eV. This membrane not only has a high protonic conductivity of 0.027 S/cm at 300 K with a transference number >0.99 but also possesses high activity (Tafel slope ∼36 mV/decade). The high reaction kinetics supported by finite element modeling simulations shows its ability to produce efficient and sustainable hydrogen. Our results suggest high current density of 1.52 mA/cm2, a turn over frequency [H2 (s−1)] ∼0.474×1018s−1, and a stability of 168 h in neutral medium (pH = 7). This work will enhance new strategies for fabricating membranes with ionic liquid in order to get membranes with protonic conductivity along with high activity for large-scale water electrolysis.\",\"PeriodicalId\":178574,\"journal\":{\"name\":\"APL Energy\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0166260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0166260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电催化质子交换膜(PEM)将质子交换膜的质子传导功能与通过加入金属离子而增强的催化活性相结合,是推动电化学能量转换和存储领域发展的一条大有可为的途径。在此,我们系统地研究了氧化锌基金属有机框架(MOF),发现在(二乙基甲胺)/(H2PO4)基质中引入聚合氧化锌可形成带隙为 3.67 eV 的 p 型导电 MOF 膜。这种膜不仅在 300 K 时具有 0.027 S/cm 的高质子电导率,转移数大于 0.99,而且还具有高活性(Tafel 斜率∼36 mV/decade)。有限元建模模拟支持的高反应动力学表明,它有能力生产高效、可持续的氢气。我们的研究结果表明,其电流密度高达 1.52 mA/cm2,翻转频率 [H2 (s-1)] ∼ 0.474×1018s-1,在中性介质(pH = 7)中的稳定性达 168 h。这项工作将为利用离子液体制造膜提供新的策略,从而获得具有质子电导率和高活性的膜,用于大规模水电解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZnO incorporated hybrid catalytic proton exchange membrane for H2 generation
Electrocatalytic proton exchange membranes (PEMs) represent a promising avenue for advancing the field of electrochemical energy conversion and storage by combining the proton-conducting function of PEMs with enhanced catalytic activity by incorporation of metal ions. Here, we systematically studied the ZnO-based metal-organic framework (MOF) and found the introduction of pegylated ZnO to the (diethyl methylamine)/(H2PO4) matrix to form the p-type conducting MOF membrane with a bandgap of 3.67 eV. This membrane not only has a high protonic conductivity of 0.027 S/cm at 300 K with a transference number >0.99 but also possesses high activity (Tafel slope ∼36 mV/decade). The high reaction kinetics supported by finite element modeling simulations shows its ability to produce efficient and sustainable hydrogen. Our results suggest high current density of 1.52 mA/cm2, a turn over frequency [H2 (s−1)] ∼0.474×1018s−1, and a stability of 168 h in neutral medium (pH = 7). This work will enhance new strategies for fabricating membranes with ionic liquid in order to get membranes with protonic conductivity along with high activity for large-scale water electrolysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信