{"title":"基于变压器剩余使用寿命预测的特征级掩码自监督辅助学习方法","authors":"Bing Xue, Xin Gao, Shuwei Zhang, Ning Wang, Shiyuan Fu, Jiahao Yu, Guangyao Zhang, Zijian Huang","doi":"10.3233/ida-227099","DOIUrl":null,"url":null,"abstract":"Nowadays, the massive industrial data has effectively improved the performance of the data-driven deep learning Remaining Useful Life (RUL) prediction method. However, there are still problems of assigning fixed weights to features and only coarse-grained consideration at the sequence level. This paper proposes a Transformer-based end-to-end feature-level mask self-supervised learning method for RUL prediction. First, by proposing a fine-grained feature-level mask self-supervised learning method, the data at different time points under all features in a time window is sent to two parallel learning streams with and without random masks. The model can learn more fine-grained degradation information by comparing the information extracted by the two parallel streams. Instead of assigning fixed weights to different features, the abstract information extracted through the above process is invariable correlations between features, which has a good generalization to various situations under different working conditions. Then, the extracted information is encoded and decoded again using an asymmetric structure, and a fully connected network is used to build a mapping between the extracted information and the RUL. We conduct experiments on the public C-MAPSS datasets and show that the proposed method outperforms the other methods, and its advantages are more obvious in complex multi-working conditions.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":"17 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A feature-level mask self-supervised assisted learning approach based on transformer for remaining useful life prediction\",\"authors\":\"Bing Xue, Xin Gao, Shuwei Zhang, Ning Wang, Shiyuan Fu, Jiahao Yu, Guangyao Zhang, Zijian Huang\",\"doi\":\"10.3233/ida-227099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the massive industrial data has effectively improved the performance of the data-driven deep learning Remaining Useful Life (RUL) prediction method. However, there are still problems of assigning fixed weights to features and only coarse-grained consideration at the sequence level. This paper proposes a Transformer-based end-to-end feature-level mask self-supervised learning method for RUL prediction. First, by proposing a fine-grained feature-level mask self-supervised learning method, the data at different time points under all features in a time window is sent to two parallel learning streams with and without random masks. The model can learn more fine-grained degradation information by comparing the information extracted by the two parallel streams. Instead of assigning fixed weights to different features, the abstract information extracted through the above process is invariable correlations between features, which has a good generalization to various situations under different working conditions. Then, the extracted information is encoded and decoded again using an asymmetric structure, and a fully connected network is used to build a mapping between the extracted information and the RUL. We conduct experiments on the public C-MAPSS datasets and show that the proposed method outperforms the other methods, and its advantages are more obvious in complex multi-working conditions.\",\"PeriodicalId\":50355,\"journal\":{\"name\":\"Intelligent Data Analysis\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Data Analysis\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ida-227099\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-227099","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A feature-level mask self-supervised assisted learning approach based on transformer for remaining useful life prediction
Nowadays, the massive industrial data has effectively improved the performance of the data-driven deep learning Remaining Useful Life (RUL) prediction method. However, there are still problems of assigning fixed weights to features and only coarse-grained consideration at the sequence level. This paper proposes a Transformer-based end-to-end feature-level mask self-supervised learning method for RUL prediction. First, by proposing a fine-grained feature-level mask self-supervised learning method, the data at different time points under all features in a time window is sent to two parallel learning streams with and without random masks. The model can learn more fine-grained degradation information by comparing the information extracted by the two parallel streams. Instead of assigning fixed weights to different features, the abstract information extracted through the above process is invariable correlations between features, which has a good generalization to various situations under different working conditions. Then, the extracted information is encoded and decoded again using an asymmetric structure, and a fully connected network is used to build a mapping between the extracted information and the RUL. We conduct experiments on the public C-MAPSS datasets and show that the proposed method outperforms the other methods, and its advantages are more obvious in complex multi-working conditions.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.