Xiangyu Wang , Jian Zhang , Shiwen Mao , Senthilkumar CG Periaswamy , Justin Patton
{"title":"利用射频全息图张量定位多个 RFID 标签的框架","authors":"Xiangyu Wang , Jian Zhang , Shiwen Mao , Senthilkumar CG Periaswamy , Justin Patton","doi":"10.1016/j.dcan.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a Deep Neural Network (DNN) based framework that employs Radio Frequency (RF) hologram tensors to locate multiple Ultra-High Frequency (UHF) passive Radio-Frequency Identification (RFID) tags. The RF hologram tensor exhibits a strong relationship between observation and spatial location, helping to improve the robustness to dynamic environments and equipment. Since RFID data is often marred by noise, we implement two types of deep neural network architectures to clean up the RF hologram tensor. Leveraging the spatial relationship between tags, the deep networks effectively mitigate fake peaks in the hologram tensors resulting from multipath propagation and phase wrapping. In contrast to fingerprinting-based localization systems that use deep networks as classifiers, our deep networks in the proposed framework treat the localization task as a regression problem preserving the ambiguity between fingerprints. We also present an intuitive peak finding algorithm to obtain estimated locations using the sanitized hologram tensors. The proposed framework is implemented using commodity RFID devices, and its superior performance is validated through extensive experiments.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 2","pages":"Pages 337-348"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for locating multiple RFID tags using RF hologram tensors\",\"authors\":\"Xiangyu Wang , Jian Zhang , Shiwen Mao , Senthilkumar CG Periaswamy , Justin Patton\",\"doi\":\"10.1016/j.dcan.2023.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present a Deep Neural Network (DNN) based framework that employs Radio Frequency (RF) hologram tensors to locate multiple Ultra-High Frequency (UHF) passive Radio-Frequency Identification (RFID) tags. The RF hologram tensor exhibits a strong relationship between observation and spatial location, helping to improve the robustness to dynamic environments and equipment. Since RFID data is often marred by noise, we implement two types of deep neural network architectures to clean up the RF hologram tensor. Leveraging the spatial relationship between tags, the deep networks effectively mitigate fake peaks in the hologram tensors resulting from multipath propagation and phase wrapping. In contrast to fingerprinting-based localization systems that use deep networks as classifiers, our deep networks in the proposed framework treat the localization task as a regression problem preserving the ambiguity between fingerprints. We also present an intuitive peak finding algorithm to obtain estimated locations using the sanitized hologram tensors. The proposed framework is implemented using commodity RFID devices, and its superior performance is validated through extensive experiments.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 2\",\"pages\":\"Pages 337-348\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001803\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001803","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A framework for locating multiple RFID tags using RF hologram tensors
In this paper, we present a Deep Neural Network (DNN) based framework that employs Radio Frequency (RF) hologram tensors to locate multiple Ultra-High Frequency (UHF) passive Radio-Frequency Identification (RFID) tags. The RF hologram tensor exhibits a strong relationship between observation and spatial location, helping to improve the robustness to dynamic environments and equipment. Since RFID data is often marred by noise, we implement two types of deep neural network architectures to clean up the RF hologram tensor. Leveraging the spatial relationship between tags, the deep networks effectively mitigate fake peaks in the hologram tensors resulting from multipath propagation and phase wrapping. In contrast to fingerprinting-based localization systems that use deep networks as classifiers, our deep networks in the proposed framework treat the localization task as a regression problem preserving the ambiguity between fingerprints. We also present an intuitive peak finding algorithm to obtain estimated locations using the sanitized hologram tensors. The proposed framework is implemented using commodity RFID devices, and its superior performance is validated through extensive experiments.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.