Y. Podrezov, N. V. Minakov, B. V. Shurigin, A. A. Golubenko, K. E. Grinkevich, M. G. Askerov, K. Gogaev
{"title":"受 TRIP 效应影响,摩擦过程中 ADI 近表面层硬化的硬度分析","authors":"Y. Podrezov, N. V. Minakov, B. V. Shurigin, A. A. Golubenko, K. E. Grinkevich, M. G. Askerov, K. Gogaev","doi":"10.15407/materials2023.07.004","DOIUrl":null,"url":null,"abstract":"Features of strengthening of the near-surface layer of ADI during friction due to strain-induced martensitic transformation were analyzed by duromeric methods. Indentation under continuous loading (Meyer hardness, HM) and Vickers microhardness Hμ were used. Pop–ins are observed on the ADI continuous load curves, which indicate martensitic transformations during indentation. The effect usually exists at a load of ~0,1 H and an depth of ~1,5 μk. The average microhardness of the initial sample is Hμ ≈ 4,89 GPa. After wear, the average value increases to Hμ ≈ 6,92 GPa. Statistical analysis of the microhardness distribution of the sample after wear revealed that a third of the indentations have abnormally high hardness, which is characteristic of deformation-induced martensite. Probably, these indents are obtained from regions of the structure where deformation-induced martensitic transformation took place. Increasing the indentation load practically does not affect the determination of the microhardness of the initial sample, but reduces the hardness of the sample after wear. This indicates the gradient nature of deformation and phase-structural rearrangements in the near-surface layer during wear. As the friction temperature increases, there is a decrease in microhardness in the wear zone. This is explained by the departure from the temperature range of the martensitic transformation, due to which the TRIP effect is weakened. The maximum degradation of microhardness is observed between room temperature and 50 oC. Keywords: ADI materials, durometric studies, TRIP-effect, wear.","PeriodicalId":509971,"journal":{"name":"Uspihi materialoznavstva","volume":"232 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Durometric analysis of hardening of the near-surface layer of ADI during friction at the influence of the TRIP effect\",\"authors\":\"Y. Podrezov, N. V. Minakov, B. V. Shurigin, A. A. Golubenko, K. E. Grinkevich, M. G. Askerov, K. Gogaev\",\"doi\":\"10.15407/materials2023.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Features of strengthening of the near-surface layer of ADI during friction due to strain-induced martensitic transformation were analyzed by duromeric methods. Indentation under continuous loading (Meyer hardness, HM) and Vickers microhardness Hμ were used. Pop–ins are observed on the ADI continuous load curves, which indicate martensitic transformations during indentation. The effect usually exists at a load of ~0,1 H and an depth of ~1,5 μk. The average microhardness of the initial sample is Hμ ≈ 4,89 GPa. After wear, the average value increases to Hμ ≈ 6,92 GPa. Statistical analysis of the microhardness distribution of the sample after wear revealed that a third of the indentations have abnormally high hardness, which is characteristic of deformation-induced martensite. Probably, these indents are obtained from regions of the structure where deformation-induced martensitic transformation took place. Increasing the indentation load practically does not affect the determination of the microhardness of the initial sample, but reduces the hardness of the sample after wear. This indicates the gradient nature of deformation and phase-structural rearrangements in the near-surface layer during wear. As the friction temperature increases, there is a decrease in microhardness in the wear zone. This is explained by the departure from the temperature range of the martensitic transformation, due to which the TRIP effect is weakened. The maximum degradation of microhardness is observed between room temperature and 50 oC. Keywords: ADI materials, durometric studies, TRIP-effect, wear.\",\"PeriodicalId\":509971,\"journal\":{\"name\":\"Uspihi materialoznavstva\",\"volume\":\"232 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspihi materialoznavstva\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/materials2023.07.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspihi materialoznavstva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/materials2023.07.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
采用硬质合金方法分析了 ADI 在摩擦过程中由于应变诱导的马氏体转变而导致近表面层强化的特征。使用了连续加载下的压痕(迈耶硬度,HM)和维氏显微硬度 Hμ。在 ADI 连续加载曲线上观察到了弹入现象,这表明压痕过程中发生了马氏体转变。这种效应通常存在于 ~0.1 H 的载荷和 ~1.5 μk 的深度时。初始样品的平均显微硬度为 Hμ ≈ 4,89 GPa。磨损后,平均值增至 Hμ ≈ 6,92 GPa。对磨损后样品显微硬度分布的统计分析显示,三分之一的压痕具有异常高的硬度,这是变形诱导马氏体的特征。这些压痕可能来自发生变形诱导马氏体转变的结构区域。增加压痕载荷实际上不会影响初始试样显微硬度的测定,但会降低磨损后试样的硬度。这表明磨损过程中近表面层的变形和相结构重排具有梯度性。随着摩擦温度的升高,磨损区的显微硬度会降低。这是因为偏离了马氏体转变的温度范围,从而削弱了 TRIP 效应。显微硬度的最大降幅出现在室温至 50 oC 之间。关键词ADI 材料、硬度计研究、TRIP 效应、磨损。
Durometric analysis of hardening of the near-surface layer of ADI during friction at the influence of the TRIP effect
Features of strengthening of the near-surface layer of ADI during friction due to strain-induced martensitic transformation were analyzed by duromeric methods. Indentation under continuous loading (Meyer hardness, HM) and Vickers microhardness Hμ were used. Pop–ins are observed on the ADI continuous load curves, which indicate martensitic transformations during indentation. The effect usually exists at a load of ~0,1 H and an depth of ~1,5 μk. The average microhardness of the initial sample is Hμ ≈ 4,89 GPa. After wear, the average value increases to Hμ ≈ 6,92 GPa. Statistical analysis of the microhardness distribution of the sample after wear revealed that a third of the indentations have abnormally high hardness, which is characteristic of deformation-induced martensite. Probably, these indents are obtained from regions of the structure where deformation-induced martensitic transformation took place. Increasing the indentation load practically does not affect the determination of the microhardness of the initial sample, but reduces the hardness of the sample after wear. This indicates the gradient nature of deformation and phase-structural rearrangements in the near-surface layer during wear. As the friction temperature increases, there is a decrease in microhardness in the wear zone. This is explained by the departure from the temperature range of the martensitic transformation, due to which the TRIP effect is weakened. The maximum degradation of microhardness is observed between room temperature and 50 oC. Keywords: ADI materials, durometric studies, TRIP-effect, wear.